Purpose: High-quality CBCT and AI-enhanced adaptive planning techniques allow CBCT-guided stereotactic adaptive radiotherapy (CT-STAR) to account for inter-fractional anatomic changes. Studies of intra-fractional respiratory motion management with a surface imaging solution for CT-STAR have not been fully conducted. We investigated intra-fractional motion management in breath-hold Ethos-based CT-STAR and CT-SBRT (stereotactic body non-adaptive radiotherapy) using optical surface imaging combined with onboard CBCTs.
View Article and Find Full Text PDFBackground And Purpose: A novel O-ring gantry can deliver stereotactic body radiation therapy (SBRT) with artificial intelligence-facilitated, CT-guided online plan adaptation. It gates mobile targets by optically monitoring skin surface motion. However, this gating solution has not been clinically validated.
View Article and Find Full Text PDFPurpose: We conducted a prospective, in silico study to evaluate the feasibility of cone-beam computed tomography (CBCT)-guided stereotactic adaptive radiation therapy (CT-STAR) for the treatment of ultracentral thoracic cancers (NCT04008537). We hypothesized that CT-STAR would reduce dose to organs at risk (OARs) compared with nonadaptive stereotactic body radiation therapy (SBRT) while maintaining adequate tumor coverage.
Methods And Materials: Patients who were already receiving radiation therapy for ultracentral thoracic malignancies underwent 5 additional daily CBCTs on the ETHOS system as part of a prospective imaging study.
We conducted a prospective pilot study evaluating the feasibility of same day MRI-only simulation and treatment with MRI-guided adaptive palliative radiotherapy (MAP-RT) for urgent palliative indications (NCT#03824366). All (16/16) patients were able to complete 99% of their first on-table attempted fractions, and no grades 3-5 toxicities occurred.
View Article and Find Full Text PDFBackground And Purpose: We conducted a prospective, in silico imaging clinical trial to evaluate the feasibility and potential dosimetric benefits of computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of locally advanced pancreatic cancer (LAPC).
Materials And Methods: Eight patients with LAPC received five additional CBCTs on the ETHOS system before or after their standard of care radiotherapy treatment. Initial plans were created based on their initial simulation anatomy (P) and emulated adaptive plans were created based on their anatomy-of-the-day (P).
Purpose: We conducted a prospective, in silico clinical imaging study (NCT04008537) to evaluate the feasibility of cone beam computed tomography-guided stereotactic adaptive radiation therapy (CT-STAR) for the treatment of abdominal oligometastases. We hypothesized that CT-STAR produces improved dosimetry compared with nonadapted CT-stereotactic body radiation therapy (SBRT).
Methods And Materials: Eight patients receiving stereotactic body radiation therapy for abdominal oligometastatic disease received 5 additional kV cone beam CTs on the ETHOS system.