Publications by authors named "Casey Grun"

The remarkable capacity of bacteria to adapt in response to selective pressures drives antimicrobial resistance. Pseudomonas aeruginosa illustrates this point, establishing chronic infections during which it evolves to survive antimicrobials and evade host defenses. Many adaptive changes occur on the P.

View Article and Find Full Text PDF

Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way.

View Article and Find Full Text PDF

Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands.

View Article and Find Full Text PDF

Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking.

View Article and Find Full Text PDF

Using DNA as programmable, sequence-specific 'glues', shape-controlled hydrogel units are self-assembled into prescribed structures. Here we report that aggregates are produced using hydrogel cubes with edge lengths ranging from 30 μm to 1 mm, demonstrating assembly across scales. In a simple one-pot agitation reaction, 25 dimers are constructed in parallel from 50 distinct hydrogel cube species, demonstrating highly multiplexed assembly.

View Article and Find Full Text PDF