Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers.
View Article and Find Full Text PDFPurpose: The UNC-Utah NA-MIC DTI framework represents a coherent, open source, atlas fiber tract based DTI analysis framework that addresses the lack of a standardized fiber tract based DTI analysis workflow in the field. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-technical researchers/investigators.
Data: We illustrate the use of our framework on a 54 directional DWI neuroimaging study contrasting 15 Smokers and 14 Controls.
Effectively addressing population-level variability within orthopedic analyses requires robust data sets that span the target population and can be greatly facilitated by statistical methods for incorporating such data into functional biomechanical models. Data sets continue to be disseminated that include not just anatomical information but also key mechanical data including tissue or joint stiffness, gait patterns, and other inputs relevant to analysis of joint function across a range of anatomies and physiologies. Statistical modeling can be used to establish correlations between a variety of structural and functional biometrics rooted in these data and to quantify how these correlations change from health to disease and, finally, to joint reconstruction or other clinical intervention.
View Article and Find Full Text PDFThe evaluation of analysis methods for diffusion tensor imaging (DTI) remains challenging due to the lack of gold standards and validation frameworks. Significant work remains in developing metrics for comparing fiber bundles generated from streamline tractography. We propose a set of volumetric and tract oriented measures for evaluating tract differences.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
March 2010
Compared to region of interest based DTI analysis, voxel-based analysis gives higher degree of localization and avoids the procedure of manual delineation with the resulting intra and inter-rater variability. One of the major challenges in voxel-wise DTI analysis is to get high quality voxel-level correspondence. For that purpose, current DTI analysis tools are building on nonlinear registration algorithms that deform individual datasets into a template image that is either precomputed or computed as part of the analysis.
View Article and Find Full Text PDFDiffusion tensor MRI (DTI) is now a widely used modality to investigate the fiber tissues in vivo, especially the white matter in brain. An automatic pipeline is described in this paper to conduct a localized voxel-wise multiple-subject group comparison study of DTI. The pipeline consists of 3 steps: 1) Preprocessing, including image format converting, image quality check, eddy-current and motion artifact correction, skull stripping and tensor image estimation, 2) study-specific unbiased DTI atlas computation via affine followed by fluid nonlinear registration and warping of all individual DTI images into the common atlas space to achieve voxel-wise correspondence, 3) voxelwise statistical analysis via heterogeneous linear regression and wild bootstrap technique for correcting for multiple comparisons.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
June 2010
It has been shown that brain structures in normal aging undergo significant changes attributed to neurodevelopmental and neurodegeneration processes as a lifelong, dynamic process. Modeling changes in healthy aging will be necessary to explain differences to neurodegenerative patterns observed in mental illness and neurological disease. Driving application is the analysis of brain white matter properties as a function of age, given a database of diffusion tensor images (DTI) of 86 subjects well-balanced across adulthood.
View Article and Find Full Text PDFDiffusion tensor imaging (DTI) provides a unique source of information about the underlying tissue structure of brain white matter in vivo including both the geometry of major fiber bundles as well as quantitative information about tissue properties represented by derived tensor measures. This paper presents a method for statistical comparison of fiber bundle diffusion properties between populations of diffusion tensor images. Unbiased diffeomorphic atlas building is used to compute a normalized coordinate system for populations of diffusion images.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
December 2008
We present a framework for hypothesis testing of differences between groups of DTI fiber tracts. An anatomical, tract-oriented coordinate system provides a basis for estimating the distribution of diffusion properties. The parametrization of sampled, smooth functions is normalized across a population using DTI atlas building.
View Article and Find Full Text PDFStandard particle filtering technique have previously been applied to the problem of fiber tracking by Brun et al. [Brun, A., Bjornemo, M.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2008
The presence of Rician noise in magnetic resonance imaging (MRI) introduces systematic errors in diffusion tensor imaging (DTI) measurements. This paper evaluates gradient direction schemes and tensor estimation routines to determine how to achieve the maximum accuracy and precision of tensor derived measures for a fixed amount of scan time. We present Monte Carlo simulations that quantify the effect of noise on diffusion measurements and validate these simulation results against appropriate in-vivo images.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2008
This paper presents a novel and fast probabilistic method for white matter fiber tracking from diffusion weighted MRI (DWI). We formulate fiber tracking on a nonlinear state space model which is able to capture both smoothness regularity of fibers and uncertainties of the local fiber orientations due to noise and partial volume effects. The global tracking model is implemented using particle filtering, which allows us to recursively compute the posterior distribution of the potential fibers.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
April 2007
We present a method for automatically finding correspondence in Diffusion Tensor Imaging (DTI) from deformable registration to a common atlas. The registration jointly produces an average DTI atlas, which is unbiased with respect to the choice of a template image, along with diffeomorphic correspondence between each image. The registration image match metric uses a feature detector for thin fiber structures of white matter, and interpolation and averaging of diffusion tensors use the Riemannian symmetric space framework.
View Article and Find Full Text PDF