Publications by authors named "Case McNamara"

The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on identifying genetic mutations in malaria parasites that confer drug resistance, essential for improving surveillance and target discovery in malaria treatment.
  • Researchers analyzed the genomes of 724 clones resistant to 118 different antimalarial compounds, uncovering 1,448 variants in 128 frequently mutated genes related to multidrug resistance.
  • The findings suggest that in vitro selected mutations are more diverse and significant than naturally occurring ones, providing insights into how these mutations can inform predictions of drug resistance in similar pathogens.
View Article and Find Full Text PDF

The papain-like protease (PLpro) is a highly conserved domain encoded by the coronavirus (CoV) genome and it plays an essential role in the replication and maturation of the virus in addition to weakening host immune response. Due to the virus's reliance on PLpro for survival and propagation, small-molecule inhibitors of PLpro serve as an attractive model for direct-acting antiviral therapeutic agents against SARS-CoV-2. Building upon existing work aimed at designing covalent inhibitors against PLpro, we report the synthesis and structure-activity relationship of analogs based on the known covalent inhibitor 1 (Sanders, et al.

View Article and Find Full Text PDF

Safe, effective, and low-cost oral antiviral therapies are needed to treat those at high risk for developing severe COVID-19. To that end, we performed a high-throughput screen to identify non-peptidic, non-covalent inhibitors of the SARS-CoV-2 main protease (Mpro), an essential enzyme in viral replication. NZ-804 was developed from a screening hit through iterative rounds of structure-guided medicinal chemistry.

View Article and Find Full Text PDF

In efforts towards eliminating malaria, a discovery program was initiated to identify a novel antimalarial using KAF156 as a starting point. Following the most recent TCP/TPP guidelines, we have identified mCMQ069 with a predicted single oral dose for treatment (∼40-106 mg) and one-month chemoprevention (∼96-216 mg). We have improved unbound MPC and predicted human clearance by 18-fold and 10-fold respectively when compared to KAF156.

View Article and Find Full Text PDF

causes widespread chronic infections that are not cured by current treatments due to inability to affect semi-dormant bradyzoite stages within tissue cysts. To identify compounds to eliminate chronic infection, we developed a HTS using a recently characterized strain of that undergoes efficient conversion to bradyzoites in intro. Stage-specific expression of luciferase was used to selectively monitor growth inhibition of bradyzoites by the Library of Pharmacological Active Compounds, consisting of 1,280 drug-like compounds.

View Article and Find Full Text PDF

Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified calcium-dependent protein kinase 1 (CDPK1) in the protozoan responsible for cryptosporidiosis as a promising target for new therapies.
  • A specific compound, a pyridopyrimidinone, was found to effectively inhibit CdPK1 and prevent the growth of various strains of the parasite in host cells.
  • Although the compound showed low systemic exposure after oral dosing, it achieved high concentrations in the gastrointestinal tract and demonstrated some effectiveness in animal models of the disease.
View Article and Find Full Text PDF

Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms.

View Article and Find Full Text PDF

The apicomplexan parasite Cryptosporidium is a leading cause of childhood diarrhea in developing countries. Current treatment options are inadequate and multiple preclinical compounds are being actively pursued as potential drugs for cryptosporidiosis. Unlike most apicomplexans, Cryptosporidium spp.

View Article and Find Full Text PDF

There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (M, 3CL) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CL inhibitor, , bearing an unprecedented trifluoromethoxymethyl ketone warhead.

View Article and Find Full Text PDF

To identify new compounds that can effectively inhibit Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), we screened, synthesized, and evaluated a series of novel aryl fluorosulfate derivatives for their in vitro inhibitory activity against Mtb. Compound 21b exhibited an in vitro minimum inhibitory concentration (MIC) of 0.06 µM against Mtb, no cytotoxicity against both HEK293T and HepG2 mammalian cell lines, and had good in vivo mouse plasma exposure and lung concentration with a 20 mg/kg oral dose, which supports advanced development as a new chemical entity for TB treatment.

View Article and Find Full Text PDF

Leishmaniasis is a group of vector-borne, parasitic diseases caused by over 20 species of the protozoan spp. The three major disease classifications, cutaneous, visceral, and mucocutaneous, have a range of clinical manifestations from self-healing skin lesions to hepatosplenomegaly and mucosal membrane damage to fatality. As a neglected tropical disease, leishmaniasis represents a major international health challenge, with nearly 350 million people living at risk of infection a year.

View Article and Find Full Text PDF

BMS906024, a γ-secretase inhibitor that blocks Notch signaling, was previously shown to inhibit Cryptosporidium parvum growth in vitro. A structure-activity relationship (SAR) analysis of BMS906024 reported herein demonstrates the importance of the stereochemistry of the C-3 benzodiazepine and the succinyl β-substituent. However, concomitant removal of the succinyl α-substituent and switching the primary amide with secondary amides was tolerated.

View Article and Find Full Text PDF
Article Synopsis
  • * The meeting highlighted that while PZQ is the only available treatment for all schistosomiasis species, it often fails to completely eliminate the infection, particularly in juvenile worms, and may face resistance issues.
  • * Experts discussed the essential criteria for developing new anti-schistosomal medications and potential drug discovery pathways to improve treatment options for this public health concern.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that malaria parasites, like Plasmodium falciparum, make red blood cells stiff so they can be removed by the spleen.
  • * They tested over 13,000 compounds and found 82 that could help stop malaria from spreading.
  • * Two drugs, NITD609 and TD-6450, were shown to be safe and effective in lab tests, and they might soon be tested in people.
View Article and Find Full Text PDF
Article Synopsis
  • - A phenotypic screen of the ReFRAME compound library pinpointed 85 cell-active compounds for treating giardiasis, yielding a hit rate of 0.72% from Giardia lamblia, GS clone H7.
  • - Mavelertinib, a third-generation EGFR tyrosine kinase inhibitor, was identified as a promising therapeutic agent due to its effectiveness against metronidazole-resistant strains and a unique binding mechanism distinct from traditional EGFR-TKIs.
  • - In murine infection models, mavelertinib showed significant efficacy at doses ranging from 5 to 50 mg/kg, prompting consideration for its repurposing in giardiasis clinical trials while further development of its analogues continues.
View Article and Find Full Text PDF

In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species.

View Article and Find Full Text PDF

There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3', 5'-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb.

View Article and Find Full Text PDF

Infection with spp. can cause severe diarrhea, leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed.

View Article and Find Full Text PDF

There is a shift in antimalarial drug discovery from phenotypic screening toward target-based approaches, as more potential drug targets are being validated in species. Given the high attrition rate and high cost of drug discovery, it is important to select the targets most likely to deliver progressible drug candidates. In this paper, we describe the criteria that we consider important for selecting targets for antimalarial drug discovery.

View Article and Find Full Text PDF

The Tuberculosis Drug Accelerator, an experiment designed to facilitate collaboration in TB drug discovery by breaking down barriers among competing labs and institutions, has reached the 10-year landmark. We review the consortium’s achievements, advantages and limitations and advocate for application of similar models to other diseases.

View Article and Find Full Text PDF

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells.

View Article and Find Full Text PDF
Article Synopsis
  • New drugs are urgently needed to treat infections in malnourished children under 2 and individuals with weakened immune systems in developing countries.
  • Researchers screened bioactive compounds from the Tres-Cantos GSK library, identifying 19 compounds and narrowing them down to four clusters for further testing in a mouse infection model.
  • Only one compound, an imidazole-pyrimidine, showed significant effectiveness in clearing the infection, demonstrating good safety and activity at low doses, and it targets calcium-dependent protein kinase 1, suggesting potential for future therapeutic development.
View Article and Find Full Text PDF