Publications by authors named "Cascade J B Sorte"

Human impacts on ecosystems are resulting in unprecedented rates of biodiversity loss worldwide. The loss of species results in the loss of the multiple roles that each species plays or functions (i.e.

View Article and Find Full Text PDF

Biological processes play important roles in determining how global changes manifest at local scales. Primary producers can absorb increased CO via daytime photosynthesis, modifying pH in aquatic ecosystems. Yet producers and consumers also increase CO via respiration.

View Article and Find Full Text PDF

Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability.

View Article and Find Full Text PDF

AbstractClimate change threatens biodiversity worldwide, and assessing how those changes will impact communities will be critical for conservation. Dominant primary producers can alter local-scale environmental conditions, reducing temperature shading and mitigating ocean acidification photosynthesis, which could buffer communities from the impacts of climate change. We conducted two experiments on the coast of southeastern Alaska to assess the effects of a common seaweed species, , on temperature and pH in field tide pools and tide pool mesocosms.

View Article and Find Full Text PDF
Article Synopsis
  • Alien species, introduced by humans outside their native habitats, can negatively impact global biodiversity, leading to the need for standardized assessments like the IUCN EICAT.
  • While EICAT focuses on the negative effects, alien species can also have positive impacts, such as providing food or habitat, but there was no established system to measure these benefits.
  • To address this, the proposed EICAT+ framework categorizes positive impacts through five scenarios and helps enhance our understanding of biological invasions, aiding in better conservation strategies.
View Article and Find Full Text PDF

Human-induced abiotic global environmental changes (GECs) and the spread of nonnative invasive species are rapidly altering ecosystems. Understanding the relative and interactive effects of invasion and GECs is critical for informing ecosystem adaptation and management, but this information has not been synthesized. We conducted a meta-analysis to investigate effects of invasions, GECs, and their combined influences on native ecosystems.

View Article and Find Full Text PDF

Globally, species are undergoing range shifts in response to climate change. However, the potential impacts of climate-driven range shifts are not well understood. In southern California, the predatory whelk Mexacanthina lugubris has undergone a northward range shift of more than 100 km in the past four decades.

View Article and Find Full Text PDF

It is critical to understand how human modifications of Earth's ecosystems are influencing ecosystem functioning, including net and gross community production (NCP and GCP, respectively) and community respiration (CR). These responses are often estimated by measuring oxygen production in the light (NCP) and consumption in the dark (CR), which can then be combined to estimate GCP. However, the method used to create "dark" conditions-either experimental darkening during the day or taking measurements at night-could result in different estimates of respiration and production, potentially affecting our ability to make integrative predictions.

View Article and Find Full Text PDF

Under climate change, marine organisms will need to tolerate or adapt to increasing temperatures to persist. The ability of populations to cope with thermal stress may be influenced by conditions experienced by parents, by both genetic changes and transgenerational phenotypic plasticity through epigenetics or maternal provisioning. In organisms with complex life cycles, larval stages are particularly vulnerable to stress.

View Article and Find Full Text PDF

Science instructors are increasingly incorporating teaching techniques that help students develop core competencies such as critical-thinking and communication skills. These core competencies are pillars of career readiness that prepare undergraduate students to successfully transition to continuing education or the workplace, whatever the field. Course-based undergraduate research experiences that culminate in written research papers can be effective at developing critical-thinking and communication skills but are challenging to implement as class size (and student-to-instructor ratio) grows.

View Article and Find Full Text PDF

To predict the threat of biological invasions to native species, it is critical that we understand how increasing abundance of invasive alien species (IAS) affects native populations and communities. The form of this relationship across taxa and ecosystems is unknown, but is expected to depend strongly on the trophic position of the IAS relative to the native species. Using a global metaanalysis based on 1,258 empirical studies presented in 201 scientific publications, we assessed the shape, direction, and strength of native responses to increasing invader abundance.

View Article and Find Full Text PDF

Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA.

View Article and Find Full Text PDF

Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions.

View Article and Find Full Text PDF

Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges.

View Article and Find Full Text PDF

Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution.

View Article and Find Full Text PDF

Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge.

View Article and Find Full Text PDF

Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions.

View Article and Find Full Text PDF

The earth is in the midst of a biodiversity crisis, and projections indicate continuing and accelerating rates of global changes. Future alterations in communities and ecosystems may be precipitated by changes in the abundance of strongly interacting species, whose disappearance can lead to profound changes in abundance of other species, including an increase in extinction rate for some. Nearshore coastal communities are often dependent on the habitat and food resources provided by foundational plant (e.

View Article and Find Full Text PDF

Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values.

View Article and Find Full Text PDF

As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation.

View Article and Find Full Text PDF

Species with broader geographical ranges are expected to be ecological generalists, while species with higher heat tolerances may be relatively competitive at more extreme and increasing temperatures. Thus, both traits are expected to relate to increased survival during transport to new regions of the globe, and once there, establishment and spread. Here, we explore these expectations using datasets of latitudinal range breadth and heat tolerance in freshwater and marine invertebrates and fishes.

View Article and Find Full Text PDF

As the climate warms, species that cannot tolerate changing conditions will only persist if they undergo range shifts. Redistribution ability may be particularly variable for benthic marine species that disperse as pelagic larvae in ocean currents. The blue mussel, Mytilus edulis, has recently experienced a warming-related range contraction in the southeastern USA and may face limitations to northward range shifts within the Gulf of Maine where dominant coastal currents flow southward.

View Article and Find Full Text PDF

Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community.

View Article and Find Full Text PDF

Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non-native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta-analytical approach to broadly evaluate whether non-native species are poised to respond more positively than native species to future climatic conditions.

View Article and Find Full Text PDF

Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed--but largely untested--that range width predicts breadth of habitat temperatures and physiological thermotolerances.

View Article and Find Full Text PDF