Ex situ programmes have become critical for improving the conservation of many threatened species, as they establish backup populations and provide individuals for reintroduction and reinforcement of wild populations. The Iberian lynx was considered the most threatened felid species in the world in the wake of a dramatic decline during the second half of the 20th century that reduced its numbers to around only 100 individuals. An ex situ conservation programme was established in 2003 with individuals from the two well-differentiated, remnant populations, with great success from a demographic point of view.
View Article and Find Full Text PDFThere is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time.
View Article and Find Full Text PDFBackground: Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction.
Results: We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics.
Population viability might become compromised by the loss of genetic diversity and the accumulation of inbreeding resulting from population decline and fragmentation. The Iberian lynx (Lynx pardinus) provides a paradigmatic example of a species at the verge of extinction, and because of the well-documented and different demographic histories of the two remaining populations (Doñana and Andújar), it provides the opportunity to evaluate the performance of analytical methods commonly applied to recently declined populations. We used mitochondrial sequences and 36 microsatellite markers to evaluate the current genetic status of the species and to assess the genetic signatures of its past history.
View Article and Find Full Text PDFTheory suggests that demographic and genetic traits deteriorate (i.e., fitness and genetic diversity decrease) when populations become small, and that such deterioration could precipitate positive feedback loops called extinction vortices.
View Article and Find Full Text PDFThe number of genetic studies that use preserved specimens as sources of DNA has been steadily increasing during the last few years. Therefore, selecting the sources that are more likely to provide a suitable amount of DNA of enough quality to be amplified and at the minimum cost to the original specimen is an important step for future research. We have compared different types of tissue (hides vs.
View Article and Find Full Text PDF