Publications by authors named "Casari E"

is a significant public health concern due to the emergence of antibiotic-resistant strains. Cefiderocol (FDC), a novel siderophore cephalosporin, has shown promise as a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of -acquired FDC-resistant strains highlights the need for advanced tools to identify resistance-associated genomic mutations and address the challenges of FDC susceptibility testing.

View Article and Find Full Text PDF

The yeast Sae2 protein, known as CtIP in mammals, once phosphorylated at Ser267, stimulates the endonuclease activity of the Mre11-Rad50-Xrs2 (MRX) complex to cleave DNA ends that possess hairpin structures or protein blocks, such as the Spo11 transesterase or trapped topoisomerases. Stimulation of the Mre11 endonuclease by Sae2 depends on a Rad50-Sae2 interaction, but the mechanism by which this is achieved remains to be elucidated. Through genetic studies, we show that the absence of the last 23 amino acids from the Sae2 C-terminus specifically impairs MRX-dependent DNA cleavage events, while preserving the other Sae2 functions.

View Article and Find Full Text PDF

Tel1/ataxia telangiectasia mutated (ATM) kinase plays multiple functions in response to DNA damage, promoting checkpoint-mediated cell-cycle arrest and repair of broken DNA. In addition, Tel1 stabilizes replication forks that arrest upon the treatment with the topoisomerase poison camptothecin (CPT). We discover that inactivation of the Exo1 nuclease exacerbates the sensitivity of Tel1-deficient cells to CPT and other agents that hamper DNA replication.

View Article and Find Full Text PDF

Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5'-terminated strand at the DSB end and resects back toward the DNA end.

View Article and Find Full Text PDF

Objectives: Genomic surveillance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is crucial for virulence, drug-resistance monitoring, and outbreak containment.

Methods: Genomic analysis on 87 KPC-Kp strains isolated from 3 Northern Italy hospitals in 2019-2021 was performed by whole genome sequencing (WGS), to characterize resistome, virulome, and mobilome, and to assess potential associations with phenotype resistance and clinical presentation. Maximum Likelihood and Minimum Spanning Trees were used to determine strain correlations and identify potential transmission clusters.

View Article and Find Full Text PDF

Malignant bile duct obstruction is typically treated by biliary stenting, which however increases the risk of bacterial infections. Here, we analyzed the microbial content of the biliary stents from 56 patients finding widespread microbial colonization. Seventeen of 36 prevalent stent species are common oral microbiome members, associate with disease conditions when present in the gut, and include dozens of biofilm- and antimicrobial resistance-related genes.

View Article and Find Full Text PDF

The yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50.

View Article and Find Full Text PDF

Background: Previous studies showed that bacterial contamination of surgical drains was associated with higher morbidity and mortality following pancreaticoduodenectomy (PD). However, there is still no agreement on the routine use of fluid drainage cultures in the management of patients underwent PD. Therefore, we aimed to clarify the role of surgical drain bacterial contamination in predicting patients' postoperative course.

View Article and Find Full Text PDF

DNA damage elicits a checkpoint response depending on the Mec1/ATR kinase, which detects the presence of single-stranded DNA and activates the effector kinase Rad53/CHK2. In Saccharomyces cerevisiae, one of the signaling circuits leading to Rad53 activation involves the evolutionarily conserved 9-1-1 complex, which acts as a platform for the binding of Dpb11 and Rad9 (referred to as the 9-1-1 axis) to generate a protein complex that allows Mec1 activation. By examining the effects of both loss-of-function and hypermorphic mutations, here, we show that the Cdc55 and Tpd3 subunits of the PP2A phosphatase counteract activation of the 9-1-1 axis.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). NHEJ is induced by the binding to DSBs of the Ku70-Ku80 heterodimer, which acts as a hub for the recruitment of downstream NHEJ components. An important issue in DSB repair is the maintenance of the DSB ends in close proximity, a function that in yeast involves the MRX complex and Sae2.

View Article and Find Full Text PDF

Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity.

View Article and Find Full Text PDF

Studies performed in the yeasts and have led the way in defining the DNA damage checkpoint and in identifying most of the proteins involved in this regulatory network, which turned out to have structural and functional equivalents in humans. Subsequent experiments revealed that the checkpoint is an elaborate signal transduction pathway that has the ability to sense and signal the presence of damaged DNA and transduce this information to influence a multifaceted cellular response that is essential for cancer avoidance. This review focuses on the work that was done in to articulate the checkpoint concept, to identify its players and the mechanisms of activation and deactivation.

View Article and Find Full Text PDF

Purpose: To investigate if symptomatic conjunctivitis during the recovery phase of the disease could be associated to a persistent presence of SARS-CoV-2 in the upper respiratory tract. Secondary end points were to analyze the presence of SARS-CoV-2 in the conjunctiva of ocular symptomatic patients and to record the presence of ocular disturbances at this point of the disease.

Methods: An observational study including consecutive COVID19 patients treated at Humanitas Clinical and Research Hospital who were attending for nasopharyngeal swab to confirm the resolution of SARS-CoV-2 infection and end of isolation.

View Article and Find Full Text PDF

Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends.

View Article and Find Full Text PDF

Budding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC and the DNA polymerase ε (Pol ε) holoenzyme. In Saccharomyces cerevisiae, Dpb4 forms histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol ε complex. Here, we show that Dpb4 plays two functions in sensing and processing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Homologous recombination is initiated by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process in which an initial short-range step is catalyzed by the Mre11-Rad50-Xrs2 (MRX) complex and limited to the vicinity of the DSB end. Then the two long-range resection Exo1 and Dna2-Sgs1 nucleases extend the resected DNA tracts.

View Article and Find Full Text PDF

Objectives: We aimed to assess the diagnostic performance of CT in patients with a negative first RT-PCR testing and to identify typical features of COVID-19 pneumonia that can guide diagnosis in this case.

Methods: Patients suspected of COVID-19 with a negative first RT-PCR testing were retrospectively revalued after undergoing CT. CT was reviewed by two radiologists and classified as suspected COVID-19 pneumonia, non-COVID-19 pneumonia or negative.

View Article and Find Full Text PDF

Generation of 3' single-stranded DNA (ssDNA) at the ends of a double-strand break (DSB) is essential to initiate repair by homology-directed mechanisms. Here we describe a Southern blot-based method to visualize the generation of ssDNA at the ends of site-specific DSBs generated in the Saccharomyces cerevisiae genome.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM.

View Article and Find Full Text PDF

Objectives: T-cell-replete haploidentical stem cell transplantation (Haplo-SCT) with post-transplant cyclophosphamide (PT-Cy) is at high risk of invasive fungal infections (IFI), and anti-mold-active drug is required for primary antifungal prophylaxis (PAP) according to international guidelines. No data are available on the efficacy of caspofungin as PAP in this setting.

Methods: Here, we report our retrospective experience with 103 consecutive patients treated with caspofungin as PAP after Haplo-SCT.

View Article and Find Full Text PDF

Background: We describe a case of pan-resistant postsurgical meningitis associated with the presence of an external ventricular device. We changed therapy twice; finally, by using amikacin and a continuous infusion of cefepime, we obtained clinical improvement.

Case Presentation: A female patient, who underwent surgery for a cavernous angioma, presented with meningitis.

View Article and Find Full Text PDF

Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection requires the Mre11-Rad50-Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11-R10T mutant variant that accelerates DSB resection compared to wild-type Mre11 by potentiating Exo1-mediated processing.

View Article and Find Full Text PDF

The evolutionarily conserved Mre11-Rad50-Xrs2 (MRX) complex cooperates with the Sae2 protein in initiating resection of DNA double-strand breaks (DSBs) and in maintaining the DSB ends tethered to each other for their accurate repair. How these MRX-Sae2 functions contribute to DNA damage resistance is not understood. By taking advantage of mre11 alleles that suppress the hypersensitivity of sae2∆ cells to genotoxic agents, we have recently found that Mre11 can be divided in two structurally distinct domains that support resistance to genotoxic agents by mediating different processes.

View Article and Find Full Text PDF

Background: Invasive fungal infections (IFI) represent a common side effect of allogeneic hematopoietic stem cell transplant (allo-SCT), resulting in increased non relapse mortality (NRM) and reduced overall survival (OS) rates. Seventy-five days of Fluconazole 400 mg/d represents the standard primary antifungal prophylaxis (PAP) after allo-SCT, especially for low-risk transplants. However, the ideal dosage of fluconazole has never been tested.

View Article and Find Full Text PDF

Background: infection is an important cause of morbidity and mortality but the optimal method of diagnosis for both patient management and infection prevention remains controversial.

Methods: Our hospital made a decision to switch from the use of toxin immunoassay to a stand-alone nucleic acid test. This change was accompanied by the provision of clear sampling guidance and rejection criteria and this study aimed to assess the impact of that change.

View Article and Find Full Text PDF