Publications by authors named "Casalou C"

Background: Plasma-derived Extracellular Vesicles (EVs) have been suggested as novel biomarkers in melanoma, due to their ability to reflect the cell of origin and ease of collection. This study aimed to identify novel EV biomarkers that can discriminate between disease stages. This was achieved by characterising the plasma-derived EVs of patients with melanoma, and comparing their proteomic and metabolomic profile to those from healthy controls.

View Article and Find Full Text PDF

Extracellular Vesicles (EV) have become an interesting focus as novel biomarkers of disease and are increasingly reported upon in humans and other species. The Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018) guidelines were published to improve rigor and standardisation within the EV field and provide a framework for the reliable isolation and characterisation of EV populations. However, this rigor and standardisation has been challenging in the area of comparative medicine.

View Article and Find Full Text PDF

The visual appearance of humans is derived significantly from our skin and hair color. While melanin from epidermal melanocytes protects our skin from the damaging effects of ultraviolet radiation, the biological value of pigmentation in the hair follicle, particularly on the scalp, is less clear. In this study, we explore the heterogeneity of pigment cells in the human scalp anagen hair follicle bulb, a site conventionally viewed to be focused solely on pigment production for transfer to the hair shaft.

View Article and Find Full Text PDF
Article Synopsis
  • KSR1 is a scaffolding protein involved in the RAS-RAF-MEK-ERK signaling pathway, which is often altered in cancers and plays a role in mutant RAS-mediated transformation.
  • Research shows that when KSR1 is knocked out in BRAFV600E-transformed melanoma cells using CRISPR/Cas9, it leads to issues like slower growth, defects in the cell cycle, and increased cell death.
  • The study indicates that KSR1 helps ERK phosphorylate proteins that promote cell survival; without KSR1, there's activation of another pathway (p38 MAPK) that contributes to these negative effects.
View Article and Find Full Text PDF

Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its moniker 'the great masquerader' reflects that not all melanomas are created equal in terms of their originating cellular contexts, but also that melanoma cells in the malignant tumor can adopt a wide range of different cell states and variable organotropism. In this review, we focus on the early phases of melanomagenesis by discussing how the originating pigment cell of the melanocyte lineage can be influenced to embark on a wide range of tumor fates with distinctive microanatomical pathways.

View Article and Find Full Text PDF

The treatment of Melanoma, one of the most aggressive human malignancies, has been revolutionised by the advent of novel targeted and immuno-therapies. However, methods utilised to detect early presentations, and to stratify risk for patients diagnosed with invasive melanoma in the clinical setting are lagging. The primary prognostic indicator is restricted to Breslow Thickness, or depth the tumour invades into the dermis.

View Article and Find Full Text PDF

The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER) subtypes.

View Article and Find Full Text PDF

Malignant melanoma, one of the most aggressive human malignancies, is responsible for 80% of skin cancer deaths. Whilst early detection of disease progression or metastasis can improve patient survival, this remains a challenge due to the lack of reliable biomarkers. Importantly, these clinical challenges are not unique to humans, as melanoma affects many other species, including companion animals, such as the dog and horse.

View Article and Find Full Text PDF
Article Synopsis
  • The Adenosine diphosphate-Ribosylation Factor (ARF) family is part of the RAS superfamily and plays key roles in processes like cell growth and movement by regulating how substances move in and out of cells.
  • These proteins work by being activated and inactivated by specific factors, leading to their influence on various cellular functions, including those related to cancer.
  • The review focuses on how ARF family members are linked to cancer development and progression, exploring their potential as targets for new cancer therapies aimed at reducing tumor invasion and growth.
View Article and Find Full Text PDF

Breast cancer is the first cause of cancer-related mortality among women worldwide, according to the most recent estimates. This mortality is mainly caused by the tumors' ability to form metastases. Cancer cell migration and invasion are essential for metastasis and rely on the interplay between actin cytoskeleton remodeling and cell adhesion.

View Article and Find Full Text PDF

Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases.

View Article and Find Full Text PDF

The Arf-like protein Arl13b has been implicated in ciliogenesis and Sonic hedgehog signaling. Furthermore, we have previously shown that it regulates endocytic recycling traffic and interacts with actin. Herein, we report that the non-muscle myosin heavy chain IIA, also known as Myh9, is an Arl13b effector.

View Article and Find Full Text PDF

Intracellular recycling pathways play critical roles in internalizing membrane and fluid phase cargo and in balancing the inflow and outflow of membrane and cell surface molecules. To identify proteins involved in the regulation of endocytic recycling, we used an shRNA trafficking library and screened for changes in the surface expression of CD1a antigen-presenting molecules that follow an endocytic recycling route. We found that silencing of the ADP-ribosylation factor (Arf)-like small GTPase Arl13b led to a decrease in CD1a surface expression, diminished CD1a function, and delayed CD1a recycling, suggesting that Arl13b is involved in the regulation of endocytic recycling traffic.

View Article and Find Full Text PDF

VEGF receptors 1 (FLT-1) and 2 (KDR) are expressed on subsets of acute myeloid leukemia (AML) and acute lymphoid leukemia cells, in which they induce cell survival, proliferation, and migration. However, little is known about possible cofactors that regulate VEGF receptor expression and activation on leukemia cells. Here we show that cholesterol accumulates in leukemia-rich sites within bone marrow of xenotransplanted severe combined immunodeficient (SCID) mice.

View Article and Find Full Text PDF

The short chain fatty acid (SCFA) butyrate is a product of colonic fermentation of dietary fibers. It is the main source of energy for normal colonocytes, but cannot be metabolized by most tumor cells. Butyrate also functions as a histone deacetylase (HDAC) inhibitor to control cell proliferation and apoptosis.

View Article and Find Full Text PDF

In tropical regions millions of people still live at risk of malaria infection. Indeed the emergence of resistance to chloroquine and other drugs in use in these areas reinforces the need to implement alternative prophylactic strategies. Genistein is a naturally occurring compound that is widely used as a food supplement and is thought to be effective in countering several pathologies.

View Article and Find Full Text PDF

The chemokine receptor CCR7 plays a critical role in lymphocyte and dendritic cell trafficking into and within lymph nodes, the preferential metastatic site for papillary (PTC) and medullary (MTC) thyroid carcinomas. In order to determine a possible role for CCR7 in mediating the metastatic behaviour of thyroid carcinomas, we analysed its expression in normal and tumoral thyroid tissues of different histotypes and studied the in vitro effects of its activation by the CCR7 ligand, CCL21. Using real-time quantitative-PCR, we observed that CCR7 expression was higher in PTCs and MTCs than in follicular and poorly differentiated thyroid carcinomas.

View Article and Find Full Text PDF

Objective: The aim of this study was to clarify the role of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) pathways in thyroid tumourigenesis.

Methods: We examined VEGF, VEGFR-1 and VEGFR-2 expression on 34 papillary thyroid carcinomas (PTCs), 18 follicular thyroid carcinomas (FTCs), eight poorly differentiated thyroid carcinomas (PDTCs) and on a thyroid tumour-derived cell line (NPA'87) by immunohistochemistry, reverse transcriptase PCR, immunofluorescence and Western blotting.

Results: We have demonstrated that VEGF expression was significantly (P < 0.

View Article and Find Full Text PDF

The cytosolic chaperonin CCT is a heterooligomeric complex of about 900 kDa that mediates the folding of cytoskeletal proteins. We observed by indirect immunofluorescence that the Tetrahymena TpCCTalpha, TpCCTdelta, TpCCTepsilon, and TpCCTeta-subunits colocalize with tubulin in cilia, basal bodies, oral apparatus, and contractile vacuole pores. TpCCT-subunits localization was affected during reciliation.

View Article and Find Full Text PDF

We report the existence of a CCT epsilon subunit gene that encodes subunit epsilon of the chaperonin CCT (chaperonin containing TCP-1) in Tetrahymena pyriformis. This work focuses on the study of the effects of the microtubule polymerizing agent taxol and the depolymerizing agent colchicine on microtubule dynamics and their role in the regulation of tubulin and CCT subunit genes. Under taxol treatment some TpCCT and tubulin genes are distinctly expressed until 30 min of treatment.

View Article and Find Full Text PDF

The sequence of a third member of the Tetrahymena pyriformis chaperonin CCT ('chaperonin containing TCP1') subunit gene family is presented. This gene, designated TpCCT alpha, is the orthologue of the mouse chaperonin gene TCP1/CCT alpha. To characterize the CCT complex in this ciliate, we have produced polyclonal antibodies against synthetic peptides based on C-terminal sequences deduced from the primary sequences of the TpCCT alpha, TpCCT gamma and TpCCT eta subunits.

View Article and Find Full Text PDF