Binding gene-wide single-stranded nucleic acids to surface-immobilized complementary probes is an important but challenging process for biophysical studies and diagnostic applications. The challenge comes from the conformational dynamics of the long chain that affects its accessibility and weakens its hybridization to the probes. We investigated the binding of bacteriophage genome M13mp18 on several different 20-mer probes immobilized on the surface of a multi-spot, label-free biosensor, and observed that only a few of them display strong binding capability with dissociation constant as low as 10 pM.
View Article and Find Full Text PDFBoth viral infection and vaccination affect the antibody repertoire of a person. Here, we demonstrate that the analysis of serum antibodies generates information not only on the virus type that caused the infection but also on the specific virus variant. We developed a rapid multiplex assay providing a fingerprint of serum antibodies against five different SARS-CoV-2 variants based on a microarray of virus antigens immobilized on the surface of a label-free reflectometric biosensor.
View Article and Find Full Text PDFWe report the first case of significant fetal myocardial involvement associated with maternal SARS-CoV-2 infection, in which restoration of cardiac function at birth was noted. The demonstration of previous infection was supported by the quantification of humoral response in child and mother, in particular the presence of anti-N antibodies and through the detection of specific antibodies against the BA.4/5 variant.
View Article and Find Full Text PDFRapid detection of whole virus particles in biological or environmental samples represents an unmet need for the containment of infectious diseases. Here, an optical device enabling the enumeration of single virion particles binding on antibody or aptamers immobilized on a surface with anti-reflective coating is described. In this regime, nanoparticles adhering to the sensor surface provide localized contributions to the reflected field that become detectable because of their mixing with the interfering waves in the reflection direction.
View Article and Find Full Text PDFThe future development of personalized nuclear medicine relies on the availability of novel medical radionuclides. In particular, radiometals are attracting considerable interest since they can be used to label both proteins and peptides. Among them, the β-emitter Ga is widely used in nuclear medicine for positron emission tomography (PET).
View Article and Find Full Text PDFGenome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair.
View Article and Find Full Text PDFC is a strong biofilm producer in comparison to K-12 laboratory strains due to higher expression of the operon encoding the enzymes for the biosynthesis of the extracellular polysaccharide poly-β-1,6--acetylglucosamine (PNAG). The operon is negatively regulated at the post-transcriptional level by two factors, namely CsrA, a conserved RNA-binding protein controlling multiple pathways, and the RNA exonuclease polynucleotide phosphorylase (PNPase). In this work, we investigated the molecular bases of different PNAG production in C-1a and MG1655 strains taken as representative of C and K-12 strains, respectively.
View Article and Find Full Text PDFTranscription factors regulate gene activity by binding specific regions of genomic DNA thanks to a subtle interplay of specific and nonspecific interactions that is challenging to quantify. Here, we exploit Reflective Phantom Interface (RPI), a label-free biosensor based on optical reflectivity, to investigate the binding of the N-terminal domain of Gal4, a well-known gene regulator, to double-stranded DNA fragments containing or not its consensus sequence. The analysis of RPI-binding curves provides interaction strength and kinetics and their dependence on temperature and ionic strength.
View Article and Find Full Text PDFA microfluidic, label-free optical sensor for water pollutants, which is based on a packed micro-column of microspheres with refractive index similar to that of water, is presented. The perfluoropolyether microspheres are synthetized by membrane emulsification followed by UV irradiation. The microfluidic channel hosting the packed column is transparent when filled with pure water as a consequence of refractive index matching, whereas it scatters light in presence of compounds with lipophilic moieties that spontaneously adsorb on the fluorinated microspheres.
View Article and Find Full Text PDFBiosens Bioelectron
January 2021
MicroRNAs are widely studied as circulating biomarkers for early stage diagnosis of several diseases. Detection and quantification of miRNAs is currently performed through complex and time consuming procedures. Herein we demonstrate a rapid, multiplex, one-pot detection method based on two-step amplification of the signal measured by Reflective Phantom Interface (RPI) label-free optical biosensor.
View Article and Find Full Text PDFSc has favorable properties for cancer diagnosis using Positron Emission Tomography (PET) making it a promising candidate for application in nuclear medicine. The implementation of its production with existing compact medical cyclotrons would mean the next essential milestone in the development of this radionuclide. While the production and application of Sc has been comprehensively investigated, the development of specific targetry and irradiation methods is of paramount importance.
View Article and Find Full Text PDFHybridization of complementary single strands of DNA represents a very effective natural molecular recognition process widely exploited for diagnostic, biotechnology, and nanotechnology applications. A common approach relies on the immobilization on a surface of single-stranded DNA probes that bind complementary targets in solution. However, despite the deep knowledge on DNA interactions in bulk solution, the modeling of the same interactions on a surface are still challenging and perceived as strongly system dependent.
View Article and Find Full Text PDFEur Phys J A Hadron Nucl
February 2020
We present the results of high-resolution laser spectroscopy of the long-lived radioactive isotopes Pm. The hyperfine structures and isotope shifts in two different atomic ground-state transitions at 452 nm and 468 nm were probed by in-source laser spectroscopy at the RISIKO mass separator in Mainz, using the PI-LIST ion source. From the hyperfine coupling constants the nuclear magnetic dipole and electric quadrupole moments for Pm were derived, and the measured isotope shifts allowed the extraction of changes in nuclear mean square charge radii.
View Article and Find Full Text PDFTheranostic strategies involve select radionuclides that allow diagnostic imaging and tailored radionuclide therapy in the same patient. An example of a Food and Drug Administration-approved theranostic pair is the Ga- and Lu-labeled DOTATATE peptides, which are used to image neuroendocrine tumors, predict treatment response, and treat disease. However, when using radionuclides of 2 different elements, differences in the pharmacokinetic and pharmacodynamic profile of the agent can occur.
View Article and Find Full Text PDFEr, a pure Auger-electron emitter, could be an attractive candidate for targeted radionuclide therapy. Auger electrons possess short penetration paths with high linear energy transfer. In this study, experimental cross-sections of the Ho(p, n)Er nuclear reaction were measured and targets irradiated with protons using Injector II cyclotron at Paul Scherrer Institute (Switzerland) and the 18 MeV medical cyclotron laboratory at the University Hospital in Bern.
View Article and Find Full Text PDFSc/Sc is one of the most promising theranostic pairs in nuclear medicine. The co-emission of 1157 keV γ-rays with 99.9% branching ratio by Sc and the presence of its metastable state Sc push to favour the adoption of Sc for Positron Emission Tomography (PET) diagnostic procedures to lighten the dose to the patient and to the personnel.
View Article and Find Full Text PDFNovel medical radioisotopes for both diagnostic and therapy are essential for the future development of personalized nuclear medicine. Among them, radiometals can be used to label both proteins and peptides and encompass promising theranostic pairs. The optimized supply of radiometals in quantity and quality for clinical applications represents a scientific and technological challenge.
View Article and Find Full Text PDFC1-inhibitor is a serine protease inhibitor (serpin) controlling complement and contact system activation. Gene mutations result in reduced C1-inhibitor functional plasma level causing hereditary angioedema, a life-threatening disorder. Despite a stable defect, the clinical expression of hereditary angioedema is unpredictable, and the molecular mechanism underlying this variability remains undisclosed.
View Article and Find Full Text PDFSc and Sc are positron emitter radionuclides that, in conjunction with the β emitter Sc, represent one of the most promising possibilities for theranostics in nuclear medicine. Their availability in suitable quantity and quality for medical applications is an open issue and their production with medical cyclotrons represents a scientific and technological challenge. For this purpose, an accurate knowledge of the production cross sections is mandatory.
View Article and Find Full Text PDFDrug-resistant bacterial pathogens pose an urgent public-health crisis. Here, we report the discovery, from microbial-extract screening, of a nucleoside-analog inhibitor that inhibits bacterial RNA polymerase (RNAP) and exhibits antibacterial activity against drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a natural product comprising a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine.
View Article and Find Full Text PDFBackground: Polynucleotide phosphorylase (PNPase, encoded by pnp) is generally thought of as an enzyme dedicated to RNA metabolism. The pleiotropic effects of PNPase deficiency is imputed to altered processing and turnover of mRNAs and small RNAs, which in turn leads to aberrant gene expression. However, it has long since been known that this enzyme may also catalyze template-independent polymerization of dNDPs into ssDNA and the reverse phosphorolytic reaction.
View Article and Find Full Text PDFHereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) is an autosomal dominant disease caused by mutations in the SERPING1 gene. A Jordanian family, including 14 individuals with C1-INH-HAE clinical symptoms, was studied. In the propositus and his parents, SERPING1 had four mutations leading to amino acid substitutions.
View Article and Find Full Text PDFPolynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3'-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3'-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria.
View Article and Find Full Text PDF