Publications by authors named "Caryne P Craige"

The serotonin system is intimately linked to both the mediation of anxiety and long-term effects of cocaine, potentially through interaction of inhibitory 5-HT2C receptor and gamma-aminobutyric acid (GABA) networks. This study characterized the function of the dorsal raphe (DR) 5-HT2C receptor and GABA network in anxiety produced by chronic cocaine withdrawal. C57BL/6 mice were injected with saline or cocaine (15 mg/kg) 3 times daily for 10 days, and tested on the elevated plus maze 30 min, 25 h, or 7 days after the last injection.

View Article and Find Full Text PDF

Accumulation of neurotoxic amyloid-β (Aβ) is a major hallmark of Alzheimer's disease (AD) pathology and an important player in its clinical manifestations. Formation of Aβ is controlled by the availability of an enzyme called γ-secretase. Despite its blockers being attractive therapeutic tools for lowering Aβ, this approach has failed because of their serious toxic side-effects.

View Article and Find Full Text PDF

Previous studies have identified an inhibitory regulatory role of the 5-HT(2C) receptor in serotonin and dopamine neurotransmission. As cocaine is known to enhance serotonin and dopamine transmission, the ability of 5-HT(2C) receptors to modulate cocaine-induced behaviors was investigated. Alterations in cocaine reward behavior were assessed in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

Characterization of glutamatergic input to dorsal raphe (DR) serotonin (5-HT) neurons is crucial for understanding how the glutamate and 5-HT systems interact in psychiatric disorders. Markers of glutamatergic terminals, vGlut1, 2 and 3, reflect inputs from specific forebrain and midbrain regions. Punctate staining of vGlut2 was homogeneous throughout the mouse DR whereas vGlut1 and vGlut3 puncta were less dense in the lateral wing (lwDR) compared with the ventromedial (vmDR) subregion.

View Article and Find Full Text PDF

Identifying the factors contributing to the etiology of anxiety and depression is critical for the development of more efficacious therapies. Serotonin (5-HT) is intimately linked to both disorders. The inhibitory serotonin-1A (5-HT(1A)) receptor exists in two separate populations with distinct effects on serotonergic signaling: (1) an autoreceptor that limits 5-HT release throughout the brain and (2) a heteroreceptor that mediates inhibitory responses to released 5-HT.

View Article and Find Full Text PDF

The primary center of serotonin (5-HT) projections to the forebrain is the dorsal raphe nucleus (DR), a region known for its role in the limbic stress response. The ventromedial subregion of the DR (vmDR) has the highest density of 5-HT neurons and is the major target in experiments that involve the DR. However, studies have demonstrated that a variety of stressors induce activation of neurons that is highest in the lateral wing subregion (lwDR) and includes activation of lwDR 5-HT neurons.

View Article and Find Full Text PDF

Most depressed patients don't respond to their first drug treatment, and the reasons for this treatment resistance remain enigmatic. Human studies implicate a polymorphism in the promoter of the serotonin-1A (5-HT(1A)) receptor gene in increased susceptibility to depression and decreased treatment response. Here we develop a new strategy to manipulate 5-HT(1A) autoreceptors in raphe nuclei without affecting 5-HT(1A) heteroreceptors, generating mice with higher (1A-High) or lower (1A-Low) autoreceptor levels.

View Article and Find Full Text PDF