Publications by authors named "Cary B Lopez"

The Indian River Lagoon (IRL), located on the east coast of Florida, is a complex estuarine ecosystem that is negatively affected by recurring harmful algal blooms (HABs) from distinct taxonomic/functional groups. Enhanced monitoring was established to facilitate rapid quantification of three recurrent bloom taxa, , , and spp., and included corroborating techniques to improve the identification of small-celled nanoplankton (<10 μm in diameter).

View Article and Find Full Text PDF

Many phytoplankton species, including many harmful algal bloom (HAB) species, survive long periods between blooms through formation of benthic resting stages. Because they are crucial to the persistence of these species and the initiation of new blooms, the physiology of benthic stages must be considered to accurately predict responses to climate warming and associated environmental changes. The benthic stages of dinoflagellates, called resting cysts, germinate in response to the combination of favorable temperature, oxygen-availability, and release from dormancy.

View Article and Find Full Text PDF

High-biomass blooms of the toxic dinoflagellate Pyrodinium bahamense occur most summers in Tampa Bay, Florida, USA, posing a recurring threat to ecosystem health. Like many dinoflagellates, P. bahamense forms immobile resting cysts that can be deposited on the seafloor-creating a seed bank that can retain the organism within the ecosystem and initiate future blooms when cysts germinate.

View Article and Find Full Text PDF

Pyrodinium bahamense is a dinoflagellate of concern in subtropical and tropical coastal environments. To date, there is only a single published study on its fatty acids, but no published data on its sterol composition. Sterols, which are membrane-reinforcing lipids in eukaryotes, display a great diversity of structures in dinoflagellates, with some serving as chemotaxonomic markers.

View Article and Find Full Text PDF

Characterization of uptake and loss dynamics is critical to understanding risks associated with contaminant exposure in aquatic animals. Dynamics are especially important in addressing questions such as why coexisting species in nature accumulate different levels of a contaminant. Here we manipulated copper (Cu) stable isotopic ratios (as an alternative to radioisotopes) to describe for the first time Cu dynamics in a freshwater invertebrate, the bivalve Corbicula fluminea.

View Article and Find Full Text PDF