Among all cellular life on earth, with the exception of yeasts, fungi, and some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes, suggesting ancient and important biological roles for these enzymes. Despite single gene and whole genome duplications on the largest evolutionary timescales, and the fact that most gene duplications eventually result in loss of one copy, it is surprising that all jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR paralogs function as entry points for nutritionally acquired and recycled K vitamers in the vitamin K cycle.
View Article and Find Full Text PDFIn humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function.
View Article and Find Full Text PDFCoagulation factor XIII (FXIII) proenzyme circulates in plasma as a heterotetramer composed of two each of A and B subunits. Upon activation, the B subunits dissociate from the A subunit dimer, which gains transglutaminase activity to cross-link preformed fibrin clots increasing mechanical strength and resistance to degradation. The B subunits are thought to possess a carrier/protective function before FXIII activation.
View Article and Find Full Text PDFRecent success in obtaining high-resolution structural data for the first several G protein-coupled receptors (GPCRs) has highlighted the feasibility of structural membrane proteomics approaches for obtaining molecular models of additional GPCRs from among the nearly 800 encoded by the human genome. Yet, production of functional receptors, in general, has proven to be difficult, typically requiring considerable time and cost investments. Here we describe screening, optimization, and scale-up methods we successfully used to produce milligram amounts of functional GPCRs in Pichia pastoris.
View Article and Find Full Text PDFHuman vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1), expressed in HEK 293T cells and localized exclusively to membranes of the endoplasmic reticulum, was found to support both vitamin K 2,3-epoxide reductase (VKOR) and vitamin K reductase enzymatic activities. Michaelis-Menten kinetic parameters for dithiothreitol-driven VKOR activity were: K(m) (μM) = 4.15 (vitamin K(1) epoxide) and 11.
View Article and Find Full Text PDFFor decades coumarins have been the most commonly prescribed drugs for therapy and prophylaxis of thromboembolic conditions. Despite the limitation of their narrow therapeutic dosage window, the broad variation of intra- and inter-individual drug requirement, and the relatively high incidence of bleeding complications, prescriptions for coumarins are increasing due to the aging populations in industrialised countries. The identification of the molecular target of coumarins, VKORC1, has greatly improved the understanding of coumarin treatment and illuminated new perspectives for a safer and more individualized oral anticoagulation therapy.
View Article and Find Full Text PDFVitamin K epoxide, a by-product of the carboxylation of blood coagulation factors, is reduced to vitamin K by an enzymatic system possessing vitamin K epoxide reductase (VKOR) activity. This system is the target of coumarin-derived drugs widely used in thrombosis therapy and prophylaxis. Recently, the key protein of the VKOR system has been identified.
View Article and Find Full Text PDFCoumarin and homologous compounds are the most widely used anticoagulant drugs worldwide. They function as antagonists of vitamin K, an essential cofactor for the posttranslational gamma-glutamyl carboxylation of the so-called vitamin K-dependent proteins. As vitamin K hydroquinone is converted to vitamin K epoxide (VKO) in every carboxylation step, the epoxide has to be recycled to the reduced form by the vitamin K epoxide reductase complex (VKOR).
View Article and Find Full Text PDFTo facilitate the use of oligosaccharides as analytical tools in biological studies, we have designed, synthesized, and conjugated to maltosaccharides a novel series of homologous small fluorescent moieties that differ in formal charge. These moieties are amide derivatives of anthranilic acid: uncharged N-(2-aminobenzoyl)glycinamide (ABGlyAmide; 2), acidic N,N-dimethyl-N(')-(2-aminobenzoyl)ethylenediamine (ABGlyDIMED; 3), and basic N-(2-aminobenzoyl)glycine (ABGly; 1). Routes for synthesis and optimal reaction conditions for glycoconjugation by conventional reductive amination are presented, as is the compatibility of these adducts with common analytical and preparative chromatographic methods, including RP-HPLC and HPAEC-PAD.
View Article and Find Full Text PDFThe mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels.
View Article and Find Full Text PDF