Publications by authors named "Caruso F"

The antiproliferative action of hispolon derivatives is stronger than that of related curcumin against several tumor cell lines. Hispolon size, smaller than curcumin, fits better than curcumin into the active site of HDAC6, an enzyme involved in deacetylation of lysine residues. HDACs are considered potential targets for tumor drug discovery and hydroxamates are known inhibitors of HDACs.

View Article and Find Full Text PDF

We report a facile inking strategy for visual information storage (e.g., writing, printing, and beyond) via surface modification of substrates with polyphenols and subsequent in situ formation of metal-phenolic networks (MPNs) on the substrates.

View Article and Find Full Text PDF

The tunable growth of metal-organic materials has implications for engineering particles and surfaces for diverse applications. Specifically, controlling the self-assembly of metal-phenolic networks (MPNs), an emerging class of metal-organic materials, is challenging, as previous studies suggest that growth often terminates through kinetic trapping. Herein, kinetic strategies were used to temporally and spatially control MPN growth by promoting self-correction of the coordinating building blocks through oxidation-mediated MPN assembly.

View Article and Find Full Text PDF

Echolocation signals of free-ranging pantropical spotted dolphins (Stenella attenuata) in the western Pacific Ocean have not been studied much. This paper aims to describe the characteristics of echolocation signals of S. attenuata in the northern South China Sea.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers collected 529 whistles from Indo-Pacific humpback dolphins in Zhanjiang, China, using autonomous acoustic recorders, focusing on tonal variations.
  • The analyzed whistles showed fundamental frequencies between 1785-21,675 Hz and durations from 30-1973 ms, with six tonal types identified, the most common being the constant type (32.51%).
  • Significant differences in whistle parameters were noted compared to studies in Malaysia and Sanniang Bay, indicating possible geographic isolation among dolphin populations due to environmental variations.
View Article and Find Full Text PDF

Nanoengineering has the potential to revolutionize medicine by designing drug delivery systems that are both efficacious and highly selective. Determination of the affinity between cell lines and nanoparticles is thus of central importance, both to enable comparison of particles and to facilitate prediction of in vivo response. Attempts to compare particle performance can be dominated by experimental artifacts (including settling effects) or variability in experimental protocol.

View Article and Find Full Text PDF

Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr.

View Article and Find Full Text PDF

Glioblastoma (GBM) is resistant to multimodality therapeutic approaches. A high burden of tumor-specific mutant peptides (neoantigens) correlates with better survival and response to immunotherapies in selected solid tumors but how neoantigens impact clinical outcome in GBM remains unclear. Here, we exploit the similarity between tumor neoantigens and infectious disease-derived immune epitopes and apply a neoantigen fitness model for identifying high-quality neoantigens in a human pan-glioma dataset.

View Article and Find Full Text PDF

Selective self-assembly in multicomponent mixtures offers a method for isolating desired components from complex systems for the rapid production of functional materials. Developing approaches capable of selective assembly of "target" components into intended three-dimensional structures is challenging because of the intrinsically high complexity of multicomponent systems. Herein, we report the selective coordination-driven self-assembly of metal-phenolic networks (MPNs) from a series of complex multicomponent systems (including crude plant extracts) into thin films via metal chelation with phenolic ligands.

View Article and Find Full Text PDF

Creating a synthetic exoskeleton from abiotic materials to protect delicate mammalian cells and impart them with new functionalities could revolutionize fields like cell-based sensing and create diverse new cellular phenotypes. Herein, the concept of "SupraCells," which are living mammalian cells encapsulated and protected within functional modular nanoparticle-based exoskeletons, is introduced. Exoskeletons are generated within seconds through immediate interparticle and cell/particle complexation that abolishes the macropinocytotic and endocytotic nanoparticle internalization pathways that occur without complexation.

View Article and Find Full Text PDF

Xenarthrans-anteaters, sloths, and armadillos-have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths.

View Article and Find Full Text PDF

Upon exposure to human blood, nanoengineered particles interact with a multitude of plasma components, resulting in the formation of a biomolecular corona. This corona modulates downstream biological responses, including recognition by and association with human immune cells. Considerable research effort has been directed toward the design of materials that can demonstrate a low affinity for various proteins (low-fouling materials) and materials that can exhibit low association with human immune cells (stealth materials).

View Article and Find Full Text PDF

Background: Breast angiosarcoma is a malignant mesenchymal neoplasm, which accounts for approximately 2% of all soft tissue sarcomas. Secondary breast angiosarcoma (SBA) may be related to chronic lymphedema after a mastectomy with lymph node dissection (Stewart Treves syndrome) and previous radiotherapy for complications from breast radiation treatment. It is a very rare condition; therefore, diagnosis and management are still a challenge.

View Article and Find Full Text PDF

Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting.

View Article and Find Full Text PDF

Background And Aim: Sepsis is associated with marked alterations in hemodynamic responses, autonomic dysfunction and impaired vascular function. However, to our knowledge, analysis of noninvasive markers to identify greater risk of death has not yet been investigated. Thus, our aim was to explore the prognostic utility of cardiac output (CO), stroke volume (SV), indices of vagal modulation (RMSSD and SD1), total heart rate variability (HRV) indices and FMD of brachial artery (%FMD), all measured noninvasively, in the first 24 hours of the diagnosis of sepsis.

View Article and Find Full Text PDF

Metal-phenolic network (MPN) coatings have generated increasing interest owing to their biologically inspired nature, facile fabrication, and near-universal adherence, especially for biomedical applications. However, a key issue in biomedicine is protein fouling, and the adsorption of proteins on tannic acid-based MPNs remains to be comprehensively studied. Herein, we investigate the interaction of specific biomedically relevant proteins in solution (e.

View Article and Find Full Text PDF

Metal-phenolic networks (MPNs) are an emerging class of functional metal-organic materials with a high degree of modularity in terms of the choice of metal ion, phenolic ligand, and assembly method. Although various applications, including drug delivery, imaging, and catalysis, have been studied with MPNs, in the form of films and capsules, the influence of metals and organic building blocks on their mechanical properties is poorly understood. Herein, we demonstrate that the mechanical properties of MPNs can be tuned through choice of the metal ion and/or phenolic ligand.

View Article and Find Full Text PDF

The aim of the present study was to investigate if resistance training (RT), performed with individualized recovery between sessions (RT-IND), promotes greater gains in strength and muscle mass and reduces the variability on adaptations compared to RT with fixed recovery intervals (RT-FIX). Twenty young men (age 21.9 ± 3.

View Article and Find Full Text PDF

Targeted drug delivery remains at the forefront of biomedical research but remains a challenge to date. Herein, the first superassembly of nanosized metal-organic polyhedra (MOP) and their biomimetic coatings of lipid bilayers are described to synergistically combine the advantages of micelles and supramolecular coordination cages for targeted drug delivery. The superassembly technique affords unique hydrophobic features that endow individual MOP to act as nanobuilding blocks and enable their superassembly into larger and well-defined nanocarriers with homogeneous sizes over a broad range of diameters.

View Article and Find Full Text PDF
Article Synopsis
  • Human microsatellite-stable (MSS) colorectal cancers are immune-resistant tumors characterized by low immune activity, and the connection between this immune resistance and MSS CRC is not well understood.
  • Researchers identified LY6G6D as a key biomarker that is overexpressed in MSS CRCs and could be linked to immune suppression and increased risk of metastatic relapse.
  • Targeting the JAK-STAT and MAPK signaling pathways, particularly with drugs like momelotinib and trametinib, may enhance treatment effectiveness against MSS CRC by overcoming resistance mechanisms.
View Article and Find Full Text PDF

Metal-phenolic networks (MPNs) have received widespread interest owing to their modular incorporation of functional metal ions and phenolic ligands. However, the interaction between MPNs and biomolecules is still relatively unexplored. Herein, we studied the effects of MPN-coated gold nanoparticles on amyloid fibril formation (which is associated with Alzheimer's disease) as a function of the metal ion in the MPN systems.

View Article and Find Full Text PDF

The reactions of antioxidants with superoxide radical were studied by cyclic voltammetry (CV)-and hydrodynamic voltammetry at a rotating ring-disk electrode (RRDE). In both methods, the superoxide is generated in solution from dissolved oxygen and then measured after being allowed to react with the antioxidant being studied. Both methods detected and measured the radical scavenging but the RRDE was able to give detailed insight into the antioxidant behavior.

View Article and Find Full Text PDF

In biological fluids, proteins bind to particles, forming so-called protein coronas. Such adsorbed protein layers significantly influence the biological interactions of particles, both in vitro and in vivo. The adsorbed protein layer is generally described as a two-component system comprising "hard" and "soft" protein coronas.

View Article and Find Full Text PDF

The intracellular delivery of nucleic acids and proteins remains a key challenge in the development of biological therapeutics. In gene therapy, the inefficient delivery of small interfering RNA (siRNA) to the cytosol by lipoplexes or polyplexes is often ascribed to the entrapment and degradation of siRNA payload in the endosomal compartments. A possible mechanism by which polyplexes rupture the endosomal membrane and release their nucleic acid cargo is commonly defined as the "proton sponge effect".

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is one of the prevalent tumors. Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to high-grade neoplasms occurring during the entire lifespan of patients. The pattern of genetic and epigenetic alterations of glioma that develops in NF1 patients and the similarities with sporadic glioma remain unknown.

View Article and Find Full Text PDF