Large language models (LLMs) have shown remarkable potential in various domains but often lack the ability to access and reason over domain-specific knowledge and tools. In this article, we introduce Chemistry Agent Connecting Tool-Usage to Science (CACTUS), an LLM-based agent that integrates existing cheminformatics tools to enable accurate and advanced reasoning and problem-solving in chemistry and molecular discovery. We evaluate the performance of CACTUS using a diverse set of open-source LLMs, including Gemma-7b, Falcon-7b, MPT-7b, Llama3-8b, and Mistral-7b, on a benchmark of thousands of chemistry questions.
View Article and Find Full Text PDFAccurate understanding of ultraviolet-visible (UV-vis) spectra is critical for the high-throughput synthesis of compounds for drug discovery. Experimentally determining UV-vis spectra can become expensive when dealing with a large quantity of novel compounds. This provides us an opportunity to drive computational advances in molecular property predictions using quantum mechanics and machine learning methods.
View Article and Find Full Text PDF