Retinitis pigmentosa (RP) is a group of genetic diseases that results in rod photoreceptor cell degeneration, which subsequently leads to cone photoreceptor cell death, impaired vision and eventual blindness. Rod-derived cone viability factor (RdCVF) is a protein which has two isoforms: a short form (RdCVF) and a long form (RdCVFL) which act on cone photoreceptors in the retina. RdCVFL protects photoreceptors by reducing hyperoxia in the retina; however, sustained delivery of RdCVFL remains challenging.
View Article and Find Full Text PDFProtein therapeutics possess high target affinity and specificity, yet short residence times, which limit their broad utility. To overcome this challenge, we used affinity interactions to modulate protein release from a hydrogel delivery vehicle thereby prolonging therapeutic availability. Specifically, we designed an affibody-modified hyaluronan (HA)-based hydrogel as a delivery platform for fibroblast growth factor 2 (FGF2), a neuroprotective and neuroregenerative factor in the central nervous system (CNS).
View Article and Find Full Text PDFWith the advent of increasingly complex combination strategies of biologics, independent control over their delivery is the key to their efficacy; however, current approaches are hindered by the limited independent tunability of their release rates. To overcome these limitations, directed evolution is used to engineer highly specific, low affinity affibody binding partners to multiple therapeutic proteins to independently control protein release rates. As a proof-of-concept, specific affibody binding partners for two proteins with broad therapeutic utility: insulin-like growth factor-1 (IGF-1) and pigment epithelium-derived factor (PEDF) are identified.
View Article and Find Full Text PDFRegenerative medicine strategies rely on exogenous cell transplantation and/or endogenous cell stimulation. Biomaterials can help to increase the regenerative potential of cells and biomolecules by controlling transplanted cell fate and provide a local, sustained release of biomolecules. In this review, we describe the use of a hyaluronan/methylcellulose (HAMC)-based hydrogel as a delivery vehicle to the brain, spinal cord, and retina to promote cellular survival and tissue repair.
View Article and Find Full Text PDFCentral nervous system (CNS) injuries, such as stroke and spinal cord injuries, result in the formation of a proteoglycan-rich glial scar, which acts as a barrier to axonal regrowth and limits the regenerative capacity of the CNS. Chondroitinase ABC (ChABC) is a potent bacterial enzyme that degrades the chondroitin sulfate proteoglycan (CSPG) component of the glial scar and promotes tissue recovery; however, its use is significantly limited by its inherent instability at physiological temperatures. Here, we demonstrate that ChABC can be stabilized using site-directed mutagenesis and covalent modification with poly(ethylene glycol) chains (i.
View Article and Find Full Text PDFIschemic stroke results in a loss of neurons for which there are no available clinical strategies to stimulate regeneration. While preclinical studies have demonstrated that functional recovery can be obtained by transplanting an exogenous source of neural progenitors into the brain, it remains unknown at which stage of neuronal maturity cells will provide the most benefit. We investigated the role of neuronal maturity on cell survival, differentiation, and long-term sensorimotor recovery in stroke-injured rats using a population of human cortically-specified neuroepithelial progenitor cells (cNEPs) delivered in a biocompatible, bioresorbable hyaluronan/methylcellulose hydrogel.
View Article and Find Full Text PDF