Publications by authors named "Carter A Mitchell"

Actin, myosin, and tubulin are ubiquitous components of the fibrous network known as the cytoskeleton. Cytoskeletal proteins are involved in a plethora of intracellular processes such as maintenance of cellular organization, organelle translocation, and various nuclear roles including chromosome separation during mitosis. Early methods for protein extraction primarily relied on the salting-out method which was performed in conjunction with biochemical assays.

View Article and Find Full Text PDF

Mass-spectrometry-based metabolomics and molecular phylogeny data were used to identify a metabolically prolific strain of that was obtained from a deep-water Great Lakes sediment sample. An investigation of the isolate's secondary metabolome resulted in the purification of a 22-mer peptaibol, gichigamin A (1). This peptidic natural product exhibited an amino acid sequence including several β-alanines that occurred in a repeating motif, causing the compound to adopt a unique right-handed 3 helical structure.

View Article and Find Full Text PDF

Few secondary metabolites have been reported from mammalian microbiome bacteria despite the large numbers of diverse taxa that inhabit warm-blooded higher vertebrates. As a means to investigate natural products from these microorganisms, an opportunistic sampling protocol was developed, which focused on exploring bacteria isolated from roadkill mammals. This initiative was made possible through the establishment of a newly created discovery pipeline, which couples laser ablation electrospray ionization mass spectrometry (LAESIMS) with bioassay testing, to target biologically active metabolites from microbiome-associated bacteria.

View Article and Find Full Text PDF

Many natural lectins have been reported to have antiviral activity. As some of these have been put forward as potential development candidates for preventing or treating viral infections, we have set out in this review to survey the literature on antiviral lectins. The review groups lectins by structural class and class of source organism we also detail their carbohydrate specificity and their reported antiviral activities.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer.

View Article and Find Full Text PDF

The genomes of two fungi isolated from soil (MEA-2) and sediment (SUP5-1) were sequenced. Both were members of the order Hypocreales, closely related to Tolypocladium inflatum, and capable of producing novel secondary metabolites. The draft genomes enabled the characterization of key biosynthetic pathways.

View Article and Find Full Text PDF

The adenosine monoposphate-forming acyl-CoA synthetase enzymes catalyze a two-step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ∼ 110 residue C-terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. The structure of an acetoacetyl-CoA synthetase (AacS) is presented that illustrates a novel aspect of this C-terminal domain.

View Article and Find Full Text PDF

Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Nonribosomal peptide synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain.

View Article and Find Full Text PDF