Publications by authors named "Cartarozzi L"

MXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. In particular, they are being investigated for photothermal therapy, drug delivery, medical imaging, biosensing, tissue engineering, blood dialysis, and antibacterial coatings.

View Article and Find Full Text PDF

Spinal cord injury results in significant motor and sensory loss. In the experimental ventral root avulsion (VRA) model, the ventral (motor) roots are disconnected from the spinal cord surface, disrupting contact between spinal motoneurons and muscle fibers. Axotomized motoneurons typically degenerate within two to three weeks after avulsion, the situation being exacerbated by an increased glial response and chronic inflammation.

View Article and Find Full Text PDF

Background: Spinal ventral root injuries generate significant motoneuron degeneration, which hinders full functional recovery. The poor prognosis of functional recovery can be attributed to the use or combination of different therapeutic approaches. Several molecules have been screened as potential treatments in combination with surgical reimplantation of the avulsed roots, the gold standard approach for such injuries.

View Article and Find Full Text PDF

Background: Spinal ventral root avulsion results in massive motoneuron degeneration with poor prognosis and high costs. In this study, we compared different isoforms of basic fibroblast growth factor 2 (FGF2), overexpressed in stably transfected Human embryonic stem cells (hESCs), following motor root avulsion and repair with a heterologous fibrin biopolymer (HFB).

Methods: In the present work, hESCs bioengineered to overexpress 18, 23, and 31 kD isoforms of FGF2, were used in combination with reimplantation of the avulsed roots using HFB.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that progressively affects motoneurons, causing muscle atrophy and evolving to death. Astrocytes inhibit the expression of MHC-I by neurons, contributing to a degenerative outcome. The present study verified the influence of interferon β (IFN β) treatment, a proinflammatory cytokine that upregulates MHC-I expression, in SOD1 transgenic mice.

View Article and Find Full Text PDF

The pleiotropic role of the major histocompatibility complex class I (MHC-I) reflects the close association between the nervous and immune systems. In turn, MHC-I upregulation postinjury is associated with a better regenerative outcome in isogenic mice following peripheral nerve damage. In the present work, we compared the time course of neuronal, glial, and sensorimotor recovery (1, 3, 5, 7, and 28 days after lesion—dal) following unilateral sciatic nerve crush in A/J and C57BL/6J mice.

View Article and Find Full Text PDF

Major histocompatibility complex class I (MHC-I) has been implicated in several types of neuroplasticity phenomena. Interferon beta-1b (IFN-β) increases MHC-I expression by motoneurons after sciatic nerve crush in mice, improving axonal growth and functional recovery. Additionally, IFN-β induces glial hypertrophy associated with upregulation of glial fibrillary acidic protein (GFAP) and MHC-I in murine astrocytes in vitro.

View Article and Find Full Text PDF

Dysregulated microglia and astrocytes have been associated with progressive neurodegeneration in multiple sclerosis (MS), highlighting the need for strategies that additionally target intrinsic inflammation in the central nervous system (CNS). The objective of the present study was to investigate the glial response in experimental autoimmune encephalomyelitis (EAE)-induced mice treated with a combination of dimethyl fumarate (DMF) and pregabalin (PGB). For that, 28 C57BL/6J mice were randomly assigned to the five experimental groups: naïve, EAE, EAE-DMF, EAE-PGB, and EAE-DMF + PGB.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective and progressive loss of motor neurons from the spinal cord, brain stem, and motor cortex. Although the hallmark of ALS is motor neuron degeneration, astrocytes, microglia, and T cells actively participate. Pharmacological treatment with riluzole has little effect on the lifespan of the patient.

View Article and Find Full Text PDF

Rupture and stretching of spinal roots are common incidents that take place in high-energy accidents. The proximal axotomy of motoneurons by crushing of ventral roots is directly related to the degeneration of half of the lesioned population within the first two weeks. Moreover, only a small percentage of surviving motoneurons can successfully achieve regeneration after such a proximal lesion, and new treatments are necessary to improve this scenario.

View Article and Find Full Text PDF

Neonatal rat sciatic nerve crush mimics obstetric axonotmesis, leading to extensive loss of motor and sensory neurons. The present study aimed to investigate the neuroprotective potential of cannabidiol (CBD) and the role of cannabinoid receptors after sciatic nerve crush in neonatal rats. For that, two-day-old Wistar rats were used, organized into the following experimental groups: sciatic nerve crush plus CBD treatment (CBD), crush plus vehicle treatment (VE), crush + CBD + AM251 treatment (AM251 - CB1 inverse agonist), crush + CBD + AM630 treatment (AM630 - CB2 antagonist).

View Article and Find Full Text PDF

Background: Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration.

View Article and Find Full Text PDF

After peripheral axotomy, there is a selective retraction of synaptic terminals in contact with injured motoneurons. This process, which actively involves glial cells, is influenced by the expression of immune-related molecules. Since toll-like receptors (TLRs) are upregulated by astrocytes and microglia following lesions, they might be involved in synaptic plasticity processes.

View Article and Find Full Text PDF

Background: The development of new therapeutic strategies to treat amyotrophic lateral sclerosis (ALS) is of utmost importance. The use of cyclic nitroxides such as tempol may provide neuroprotection and improve lifespan. We investigated whether tempol (50 mg/kg) presents therapeutic potential in SOD1 transgenic mice.

View Article and Find Full Text PDF

Lesions to the CNS/PNS interface are especially severe, leading to elevated neuronal degeneration. In the present work, we establish the ventral root crush model for mice, and demonstrate the potential of such an approach, by analyzing injury evoked motoneuron loss, changes of synaptic coverage and concomitant glial responses in β2-microglobulin knockout mice (β2m KO). Young adult (8-12 weeks old) C57BL/6J (WT) and β2m KO mice were submitted to a L4-L6 ventral roots crush.

View Article and Find Full Text PDF

Objectives: The cellular therapy using adipose-derived mesenchymal stem cells (ASCs) aims to improve tendon healing, considering that repaired tendons often result in a less resistant tissue. Our objective was to evaluate the effects of the ASCs combination with a low-level laser (LLL), an effective photobiostimulation for the healing processes.

Materials And Methods: Rats calcaneal tendons were divided into five groups: normal (NT), transected (T), transected and ASCs (SC) or LLL (L), or with ASCs and LLL (SCL).

View Article and Find Full Text PDF

Immature peripheral nervous system damage, such as the transection of a peripheral nerve, results in the extensive degeneration of motoneurons and dorsal root ganglia (DRG) sensory neurons, mostly due to apoptotic events. We have previously shown that cannabidiol (CBD), the most abundant non-psychotropic molecule present in the Cannabis sativa plant, exhibits neuroprotective action when administered daily at a dose of 15 mg/kg. This study shows that use of the fluorinated synthetic version of CBD (4'-fluoro-cannabidiol, HUF-101) significantly improves neuronal survival by 2-fold compared to that achieved with traditional CBD at one-third the dose.

View Article and Find Full Text PDF

NG2 glia are self-renewal cells widely populating the entire central nervous system (CNS). The differentiation potential of NG2 glia in the brain has been systematically studied. However, the fate of NG2 glia in the spinal cord during development and after injury is still unclear.

View Article and Find Full Text PDF

Background: Interactions between motoneurons and glial cells are pivotal to regulate and maintain functional states and synaptic connectivity in the spinal cord. In vivo two-photon imaging of the nervous system provided novel and unexpected knowledge about structural and physiological changes in the grey matter of the forebrain and in the dorsal white matter of the spinal cord.

New Method: Here, we describe a novel experimental strategy to investigate the spinal grey matter, i.

View Article and Find Full Text PDF

Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome.

View Article and Find Full Text PDF

The present study investigated the effectiveness of mesenchymal stem cells (MSCs) associated with a fibrin scaffold (FS) for the peripheral regenerative process after nerve tubulization. Adult female Lewis rats received a unilateral sciatic nerve transection followed by repair with a polycaprolactone (PCL)-based tubular prosthesis. Sixty days after injury, the regenerated nerves were studied by immunohistochemistry.

View Article and Find Full Text PDF

In neonatal rats, the transection of a peripheral nerve leads to an intense retrograde degeneration of both motor and sensory neurons. Most of the axotomy-induced neuronal loss is a result of apoptotic processes. The clinical use of neurotrophic factors is difficult due to side effects and elevated costs, but other molecules might be effective and more easily obtained.

View Article and Find Full Text PDF

Background: The histocompatibility complex (MHC) class I expression in the central nervous system (CNS) regulates synaptic plasticity events during development and adult life. Its upregulation may be associated with events such as axotomy, cytokine exposition and changes in neuron electrical activity. Since IFNγ is a potent inducer of the MHC I expression, the present work investigated the importance of this pro-inflammatory cytokine in the synaptic elimination process in the spinal cord, as well as the motor recovery of IFN⁻/⁻, following peripheral injury.

View Article and Find Full Text PDF

Aims: Major histocompatibility complex (MHC) class I expression by neurones and glia constitutes an important pathway that regulates synaptic plasticity. The upregulation of MHC class I after treatment with interferon beta (IFN beta) accelerates the response to injury. Therefore the present work studied the regenerative outcome after peripheral nerve lesion and treatment with IFN beta, aiming at increasing MHC class I upregulation in the spinal cord.

View Article and Find Full Text PDF