Publications by authors named "Carsten Schubert"

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

Emissions of microbially produced methane (CH) from lake sediments are a major source of this potent greenhouse gas to the atmosphere. The rates of CH production and emission are believed to be influenced by electron acceptor distributions and organic carbon contents, which in turn are affected by anthropogenic inputs of nutrients leading to eutrophication. Here, we investigate how eutrophication influences the abundance and community structure of CH producing and methanogenesis pathways across time-resolved sedimentary records of five Swiss lakes with well-characterized trophic histories.

View Article and Find Full Text PDF

Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake.

View Article and Find Full Text PDF

The extent of littoral influence on lake gas dynamics remains debated in the aquatic science community due to the lack of direct quantification of lateral gas transport. The prevalent assumption of diffusive horizontal transport in gas budgets fails to explain anomalies observed in pelagic gas concentrations. Here, we demonstrate through high-frequency measurements in a eutrophic lake that daily convective horizontal circulation generates littoral-pelagic advective gas fluxes one order of magnitude larger than typical horizontal fluxes used in gas budgets.

View Article and Find Full Text PDF

Lake Tanganyika's pelagic fish sustain the second largest inland fishery in Africa and are under pressure from heavy fishing and global warming related increases in stratification. The strength of water column stratification varies regionally, with a more stratified north and an upwelling-driven, biologically more productive south. Only little is known about whether such regional hydrodynamic regimes induce ecological or genetic differences among populations of highly mobile, pelagic fish inhabiting these different areas.

View Article and Find Full Text PDF

The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys.

View Article and Find Full Text PDF

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are common in lake sediments, where they are frequently employed to infer mean annual air temperatures (MAAT) or air temperatures of months above freezing (MAF) using the MBT' lipid paleothermometer. The reliable reconstruction of such temperatures, however, requires robust calibration functions. Here, we investigated brGDGT distributions in surface sediments from 41 freshwater lakes located along an altitudinal gradient across the Alps (Central Europe) and spanning a MAAT range from 1.

View Article and Find Full Text PDF

Even though lake sediments are globally important organic carbon (OC) sinks, the controls on long-term OC storage in these sediments are unclear. Using a multiproxy approach, we investigate changes in diatom, green algae, and vascular plant biomolecules in sedimentary records from the past centuries across five temperate lakes with different trophic histories. Despite past increases in the input and burial of OC in sediments of eutrophic lakes, biomolecule quantities in sediments of all lakes are primarily controlled by postburial microbial degradation over the time scales studied.

View Article and Find Full Text PDF

The nitrogen (N) cycle is of global importance, as N is an essential element and a limiting nutrient in terrestrial and aquatic ecosystems. Excessive anthropogenic N fertilizer usage threatens sensitive downstream aquatic ecosystems. Although freshwater lake sediments remove N through various microbially mediated processes, few studies have investigated the microbial communities involved.

View Article and Find Full Text PDF

Symbiotic N-fixing microorganisms have a crucial role in the assimilation of nitrogen by eukaryotes in nitrogen-limited environments. Particularly among land plants, N-fixing symbionts occur in a variety of distantly related plant lineages and often involve an intimate association between host and symbiont. Descriptions of such intimate symbioses are lacking for seagrasses, which evolved around 100 million years ago from terrestrial flowering plants that migrated back to the sea.

View Article and Find Full Text PDF

Biological N fixation was key to the expansion of life on early Earth. The N-fixing microorganisms and the nitrogenase type used in the Proterozoic are unknown, although it has been proposed that the canonical molybdenum-nitrogenase was not used due to low molybdenum availability. We investigate N fixation in Lake Cadagno, an analogue system to the sulfidic Proterozoic continental margins, using a combination of biogeochemical, molecular and single cell techniques.

View Article and Find Full Text PDF

Geogenic arsenic (As) contamination of groundwater is a health threat to millions of people worldwide, particularly in alluvial regions of South and Southeast Asia. Mitigation measures are often hindered by high heterogeneities in As concentrations, the cause(s) of which are elusive. Here we used a comprehensive suite of stable isotope analyses and hydrogeochemical parameters to shed light on the mechanisms in a typical high-As Holocene aquifer near Hanoi where groundwater is advected to a low-As Pleistocene aquifer.

View Article and Find Full Text PDF

Climate warming is causing rapid spatial expansion of ocean warm pools from equatorial latitudes towards the subtropics. Sedentary coral reef inhabitants in affected areas will thus be trapped in high temperature regimes, which may become the "new normal". In this study, we used clownfish Amphiprion ocellaris as model organism to study reef fish mechanisms of thermal adaptation and determine how high temperature affects multiple lipid aspects that influence physiology and thermal tolerance.

View Article and Find Full Text PDF

Unlabelled: Freshwater lakes are essential hotspots for the removal of excessive anthropogenic nitrogen (N) loads transported from the land to coastal oceans. The biogeochemical processes responsible for N removal, the corresponding transformation rates and overall removal efficiencies differ between lakes, however, it is unclear what the main controlling factors are. Here, we investigated the factors that moderate the rates of N removal under contrasting trophic states in two lakes located in central Switzerland.

View Article and Find Full Text PDF

Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution.

View Article and Find Full Text PDF

In marine and freshwater oxygen-deficient zones, the remineralization of sinking organic matter from the photic zone is central to driving nitrogen loss. Deep blooms of photosynthetic bacteria, which form the suboxic/anoxic chlorophyll maximum (ACM), widespread in aquatic ecosystems, may also contribute to the local input of organic matter. Yet, the influence of the ACM on nitrogen and carbon cycling remains poorly understood.

View Article and Find Full Text PDF

Coastal lakes (CL) act as limnetic-β-oligohaline systems located on non-tidal coastlines in fresh and salt water mixing zone. Owing to considerable terrestrial nutrient input and a high autochthonous productivity CLs release greenhouse gases (GHG) to the ambient atmosphere, however, neither emission from the system was assessed nor controls on the emission were recognized so far. In this study we attempted to quantify diffusive emissions of CH, CO and NO from CLs based on data collected from seven lakes located on a south coast of the Baltic Sea in Poland.

View Article and Find Full Text PDF

Lake sediments are globally important carbon sinks. Although the fate of organic carbon in lake sediments depends significantly on microorganisms, only few studies have investigated controls on lake sedimentary microbial communities. Here we investigate the impact of anthropogenic eutrophication, which affects redox chemistry and organic matter (OM) sources in sediments, on microbial communities across five lakes in central Switzerland.

View Article and Find Full Text PDF

Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown.

View Article and Find Full Text PDF

Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light-independent sulfide removal in the chemocline of Lake Cadagno.

View Article and Find Full Text PDF

Terrestrial paleoclimate archives such as lake sediments are essential for our understanding of the continental climate system and for the modeling of future climate scenarios. However, quantitative proxies for the determination of paleotemperatures are sparse. The relative abundances of certain bacterial lipids, i.

View Article and Find Full Text PDF

Methanotrophic bacteria represent an important biological filter regulating methane emissions into the atmosphere. Planktonic methanotrophic communities in freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with a contribution from alpha-proteobacterial methanotrophs and the NC10 bacteria. The NC10 clade encompasses methanotrophs related to 'Candidatus Methylomirabilis oxyfera', which oxidize methane using a unique pathway of denitrification that tentatively produces N and O from nitric oxide (NO).

View Article and Find Full Text PDF

We designed and synthesized a new series of fatty acid synthase (FASN) inhibitors with potential utility for the treatment of cancer. Extensive SAR studies led to highly active FASN inhibitors with good cellular activity and oral bioavailability, exemplified by compound 34. Compound 34 is a potent inhibitor of human FASN (IC = 28 nM) that effectively inhibits proliferation of A2780 ovarian cells (IC = 13 nM) in lipid-reduced serum (LRS).

View Article and Find Full Text PDF

We monitored CH emissions during the ice-free period of an Alpine hydropower reservoir in the Swiss Alps, Lake Klöntal, to investigate mechanisms responsible for CH variability and to estimate overall emissions to the atmosphere. A floating eddy-covariance platform yielded total CH and CO emission rates at high temporal resolution, while hydroacoustic surveys provided no indication of CH ebullition. Higher CH fluxes (2.

View Article and Find Full Text PDF

Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear.

View Article and Find Full Text PDF