Publications by authors named "Carsten N Boehler"

Recent behavioral evidence implicates reward prediction errors (RPEs) as a key factor in the acquisition of episodic memory. Yet, important neural predictions related to the role of RPEs in episodic memory acquisition remain to be tested. Humans (both sexes) performed a novel variable-choice task where we experimentally manipulated RPEs and found support for key neural predictions with fMRI.

View Article and Find Full Text PDF

Action preparation is associated with a transient decrease of corticospinal excitability just before target onset. We have previously shown that the prospect of reward modulates preparatory corticospinal excitability in a Simon task. While the conflict in the Simon task strongly implicates the motor system, it is unknown whether reward prospect modulates preparatory corticospinal excitability in tasks that implicate the motor system less directly.

View Article and Find Full Text PDF

The preparation of an action is accompanied by transient corticospinal (CS) excitability changes. Motivation can modulate these changes. Specifically, when a cue indicates that a reward can be obtained, CS excitability initially increases, followed by a pronounced decrease.

View Article and Find Full Text PDF

Objects that promise rewards are prioritized for visual selection. The way this prioritization shapes sensory processing in visual cortex, however, is debated. It has been suggested that rewards motivate stronger attentional focusing, resulting in a modulation of sensory selection in early visual cortex.

View Article and Find Full Text PDF

Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function.

View Article and Find Full Text PDF

It has long been known from animal literature that the locus coeruleus (LC), the source region of noradrenergic neurons in the brain, is sensitive to unexpected, novel, and other salient events. In humans, however, direct assessment of LC activity has proven to be challenging due to its small size and difficult localization, which is why noradrenergic activity has often been assessed using more indirect measures such as electroencephalography (EEG) and pupil recordings. Here, we combined high-resolution functional magnetic resonance imaging (fMRI) with a special anatomical sequence to assess neural activity in the LC in response to different types of salient stimuli in an oddball paradigm (novel neutral oddballs, novel emotional oddballs, and familiar target oddballs).

View Article and Find Full Text PDF

Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location.

View Article and Find Full Text PDF

Congruency sequence effects (CSEs) refer to the observation that congruency effects in conflict tasks are typically smaller following incongruent compared to following congruent trials. This measure has long been thought to provide a unique window into top-down attentional adjustments and their underlying brain mechanisms. According to the renowned conflict monitoring theory, CSEs reflect enhanced selective attention following conflict detection.

View Article and Find Full Text PDF

Impulsivity is a multidimensional construct that has been suggested as a vulnerability factor for several psychiatric disorders, especially addiction disorders. Poor response inhibition may constitute one facet of impulsivity. Trait impulsivity can be assessed by self-report questionnaires such as the widely used Barratt Impulsiveness Scale (BIS-11).

View Article and Find Full Text PDF

Feature attention operates in a spatially global way, with attended feature values being prioritized for selection outside the focus of attention. Accounts of global feature attention have emphasized feature competition as a determining factor. Here, we use magnetoencephalographic recordings in humans to test whether competition is critical for global feature selection to arise.

View Article and Find Full Text PDF

Anticipating a potential benefit and how difficult it will be to obtain it are valuable skills in a constantly changing environment. In the human brain, the anticipation of reward is encoded by the Anterior Cingulate Cortex (ACC) and Striatum. Naturally, potential rewards have an incentive quality, resulting in a motivational effect improving performance.

View Article and Find Full Text PDF

Decision-making involves weighing costs against benefits, for instance, in terms of the effort it takes to obtain a reward of a given magnitude. This evaluation process has been linked to the dorsal anterior cingulate cortex (dACC) and the striatum, with activation in these brain structures reflecting the discounting effect of effort on reward. Here, we investigate how cognitive effort influences neural choice processes in the absence of an extrinsic reward.

View Article and Find Full Text PDF

Response inhibition is an important cognitive-control function that allows for already-initiated or habitual behavioral responses to be promptly withheld when needed. A typical paradigm to study this function is the stop-signal task. From this task, the stop-signal response time (SSRT) can be derived, which indexes how rapidly an already-initiated response can be canceled.

View Article and Find Full Text PDF

Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top-down settings defining reward relevance from those defining attention.

View Article and Find Full Text PDF

According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli.

View Article and Find Full Text PDF

Goal-directed behavior requires the ability to focus on information that is relevant to a given task and to ignore information that might interfere with it. In the Stroop task, for example, the influence of an irrelevant word needs to be overcome, which is believed to be difficult because it arises in a fast and automatic fashion, which effectively renders it very salient. Here we address the question of whether this can be counteracted by increasing the saliency of the task-relevant input, for example by modulating its relative novelty, which increases saliency in a fairly implicit and controlled fashion.

View Article and Find Full Text PDF

Associating stimuli with the prospect of reward typically facilitates responses to those stimuli due to an enhancement of attentional and cognitive-control processes. Such reward-induced facilitation might be especially helpful when cognitive-control mechanisms are challenged, as when one must overcome interference from irrelevant inputs. Here, we investigated the neural dynamics of reward effects in a color-naming Stroop task by employing event-related potentials (ERPs).

View Article and Find Full Text PDF

Feature-based attention is known to operate in a spatially global manner, in that the selection of attended features is not bound to the spatial focus of attention. Here we used electromagnetic recordings in human observers to characterize the spatiotemporal signature of such global selection of an orientation feature. Observers performed a simple orientation-discrimination task while ignoring task-irrelevant orientation probes outside the focus of attention.

View Article and Find Full Text PDF

Reward prospect has been demonstrated to facilitate various cognitive and behavioral operations, particularly by enhancing the speed and vigor of processes linked to approaching reward. Studies in this domain typically employed task regimes in which participants' overt responses are facilitated by prospective rewards. In contrast, we demonstrate here that even the cancellation of a motor response can be accelerated by reward prospect, thus signifying reward-related benefits on restraint rather than approach behavior.

View Article and Find Full Text PDF

Attentional selection on the basis of nonspatial stimulus features induces a sensory gain enhancement by increasing the firing-rate of individual neurons tuned to the attended feature, while responses of neurons tuned to opposite feature-values are suppressed. Here we recorded event-related potentials (ERPs) and magnetic fields (ERMFs) in human observers to investigate the underlying neural correlates of feature-based attention at the population level. During the task subjects attended to a moving transparent surface presented in the left visual field, while task-irrelevant probe stimuli executing brief movements into varying directions were presented in the opposite visual field.

View Article and Find Full Text PDF

Efficient interaction with the sensory environment requires the rapid reallocation of attentional resources between spatial locations, perceptual features, and objects. It is still a matter of debate whether one single domain-general network or multiple independent domain-specific networks mediate control during shifts of attention across features, locations, and objects. Here, we employed functional magnetic resonance imaging to directly compare the neural mechanisms controlling attention during voluntary and stimulus-driven shifts across objects and locations.

View Article and Find Full Text PDF

The pulvinar nuclei of the thalamus are hypothesized to coordinate attentional selection in the visual cortex. Different models have, however, been proposed for the precise role of the pulvinar in attention. One proposal is that the pulvinar mediates shifts of spatial attention; a different proposal is that it serves the filtering of distractor information.

View Article and Find Full Text PDF

Humans are able to continuously monitor environmental situations and adjust their behavioral strategies to optimize performance. Here we investigate the behavioral and brain adjustments that occur when conflicting stimulus elements are, or are not, temporally predictable. ERPs were collected while manual response variants of the Stroop task were performed in which the SOAs between the relevant color and irrelevant word stimulus components were either randomly intermixed or held constant within each experimental run.

View Article and Find Full Text PDF

Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish.

View Article and Find Full Text PDF

It is commonly accepted that reward is an effective motivator of behavior, but little is known about potential costs resulting from reward associations. Here, we used functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings of such reward-related performance-disrupting effects in a reward-modulated Stroop task in humans. While reward associations in the task-relevant dimension (i.

View Article and Find Full Text PDF