Publications by authors named "Carsten Munk"

The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance.

View Article and Find Full Text PDF

The rather few cases of humans infected by HIV-1 N, O, or P raise the question of their incomplete adaptation to humans. We hypothesized that early postentry restrictions may be relevant for the impaired spread of these HIVs. One of the best-characterized species-specific restriction factors is TRIM5α.

View Article and Find Full Text PDF

Sensing of human immunodeficiency virus type 1 (HIV-1) DNA is mediated by the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling axis. Signal transduction and regulation of this cascade is achieved by post-translational modifications. Here we show that cGAS-STING-dependent HIV-1 sensing requires interferon-stimulated gene 15 (ISG15).

View Article and Find Full Text PDF

Despite scientific evidence originating from two patients published to date that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure human immunodeficiency virus type 1 (HIV-1), the knowledge of immunological and virological correlates of cure is limited. Here we characterize a case of long-term HIV-1 remission of a 53-year-old male who was carefully monitored for more than 9 years after allogeneic CCR5Δ32/Δ32 HSCT performed for acute myeloid leukemia. Despite sporadic traces of HIV-1 DNA detected by droplet digital PCR and in situ hybridization assays in peripheral T cell subsets and tissue-derived samples, repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice did not reveal replication-competent virus.

View Article and Find Full Text PDF
Article Synopsis
  • HIV-1, a retrovirus, integrates its genome into the host's DNA, which requires protection of its viral complexes from degradation in the host cytoplasm.
  • The capsid, which surrounds these complexes, raises challenges for HIV-1's transport from the cytoplasm to the nucleus because of the nuclear membrane's selective barrier for large molecules.
  • The virus has developed multiple strategies to exploit cell transport systems for moving its components, and understanding these mechanisms may help create targeted therapies against HIV-1.
View Article and Find Full Text PDF

The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components.

View Article and Find Full Text PDF

Nucleocytoplasmic shuttling of viral elements, supported by several host factors, is essential for the replication of the human immunodeficiency virus (HIV). HIV-1 uses a nuclear RNA export pathway mediated by viral protein Rev to transport its Rev response element (RRE)-containing partially spliced and unspliced transcripts aided by the host nuclear RNA export protein CRM1. The factor(s) interacting with the CRM1-Rev complex are potential antiretroviral target(s) and could serve as a retroviral model system to study nuclear export machinery adapted by these viruses.

View Article and Find Full Text PDF

Serine incorporator 5 (SERINC5 or SER5) is a multipass transmembrane protein with ill-defined cellular activities. SER5 was recently described as a human immunodeficiency virus 1 (HIV-1) restriction factor capable of inhibiting HIV-1 that does not express its accessory protein Nef (Δ Nef). SER5 incorporated into the viral membrane impairs the entry of HIV-1 by disrupting the fusion between the viral and the plasma membrane after envelope receptor interaction induced the first steps of the fusion process.

View Article and Find Full Text PDF

Major histocompatibility complex I (MHC-I) molecules present epitopes on the cellular surface of antigen-presenting cells to prime cytotoxic clusters of differentiation 8 (CD8) T cells (CTLs), which then identify and eliminate other cells such as virus-infected cells bearing the antigen. Human hepatitis virus cohort studies have previously identified MHC-I molecules as promising predictors of viral clearance. However, the underlying functional significance of these predictions is not fully understood.

View Article and Find Full Text PDF

Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2-HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity.

View Article and Find Full Text PDF

Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein.

View Article and Find Full Text PDF

Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers.

View Article and Find Full Text PDF

In this Special Issue, a wide variety of original and review articles provide a timely overview of how viruses are recognized by and evade from cellular innate immunity, which represents the first line of defense against viruses [...

View Article and Find Full Text PDF

Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans.

View Article and Find Full Text PDF

The human APOBEC3A (A3A) polynucleotide cytidine deaminase has been shown to have antiviral activity against HTLV-1 but not HIV-1, when expressed in the virus producer cell. In viral target cells, high levels of endogenous A3A activity have been associated with the restriction of HIV-1 during infection. Here we demonstrate that A3A derived from both target cells and producer cells can block the infection of Moloney-MLV (MLV) and related AKV-derived strains of MLV in a deaminase-dependent mode.

View Article and Find Full Text PDF

The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood.

View Article and Find Full Text PDF

APOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-to-dU deamination on viral ssDNA. Within primates, A3s have undergone a complex evolution via gene duplications, fusions, arms race, and selection. Human APOBEC3C (hA3C) efficiently restricts the replication of viral infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown reasons, it inhibits HIV-1Δvif only weakly.

View Article and Find Full Text PDF

Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies (SIVcpzPtt). The related subspecies is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6.

View Article and Find Full Text PDF

Macrophages and dendritic cells dominate early immune responses to lentiviruses. HIV-1 sensing by pathogen recognition receptors induces signaling cascades that culminate in type I alpha/beta interferon (IFN-α/β) induction. IFN-α/β signals back via the IFN-α/β receptors, inducing a plethora of IFN-stimulated gene (ISGs), including ISG15, p53, and p21 p21 inhibits HIV-1 replication by inactivating the deoxynucleoside triphosphate (dNTP) biosynthesis pathway and activating the restriction factor SAMHD1.

View Article and Find Full Text PDF

The most common mutational signature in urothelial carcinoma (UC), the most common type of urinary bladder cancer is assumed to be caused by the misdirected activity of APOBEC3 (A3) cytidine deaminases, especially A3A or A3B, which are known to normally restrict the propagation of exogenous viruses and endogenous retroelements such as LINE-1 (L1). The involvement of A3 proteins in urothelial carcinogenesis is unexpected because, to date, UC is thought to be caused by chemical carcinogens rather than viral activity. Therefore, we explored the relationship between A3 expression and L1 activity, which is generally upregulated in UC.

View Article and Find Full Text PDF

Human myxovirus resistance protein B (hMXB) is a restriction factor of HIV-1 that also inhibits a variety of retroviruses. However, hMXB is not antiviral against equine infectious anemia virus (EIAV). We show here that equine MX2 (eMX2) potently restricts EIAV in vitro.

View Article and Find Full Text PDF

The host intrinsic innate immune system drives antiviral defenses and viral restriction, which includes the production of soluble factors, such as type I and III interferon (IFN), and activation of restriction factors, including SAMHD1, a deoxynucleoside triphosphohydrolase. Interferon-stimulated gene 15 (ISG15)-specific ubiquitin-like protease 43 (USP18) abrogates IFN signaling pathways. The cyclin-dependent kinase inhibitor p21 (CIP1/WAF1), which is involved in the differentiation and maturation of monocytes, inhibits human immunodeficiency virus type 1 (HIV-1) in macrophages and dendritic cells.

View Article and Find Full Text PDF

The MX dynamin GTPases inhibit diverse viruses at early post-entry phases. While MXA acts antiviral against influenza viruses, the anti HIV-1 activity of MXB was discovered recently. Here, we have studied the antiviral effect of MX proteins on murine cytomegalovirus (MCMV).

View Article and Find Full Text PDF

Background: Hosts are able to restrict viral replication to contain virus spread before adaptive immunity is fully initiated. Many viruses have acquired genes directly counteracting intrinsic restriction mechanisms. This phenomenon has led to a co-evolutionary signature for both the virus and host which often provides a barrier against interspecies transmission events.

View Article and Find Full Text PDF

The replication of lentiviruses highly depends on host cellular factors, which defines their species-specific tropism. Cellular restriction factors that can inhibit lentiviral replication were recently identified. (FIV) was found to be sensitive to several feline cellular restriction factors, such as apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) and tetherin, but FIV evolved to counteract them.

View Article and Find Full Text PDF