Publications by authors named "Carsten Magnus"

Real-world data (RWD) collected to generate real-world evidence (RWE) holds promise for expediting patient and healthcare provider access to new in vitro diagnostics (IVDs) by serving as evidence to demonstrate test performance or utility. However, uncertainties remain for IVD developers (device manufacturers), regulators, and other healthcare stakeholders on the specifics of collecting fit-for-purpose RWD and using RWE for regulatory decision-making. We report on a unique approach to medical device regulatory review called the Open Hand Initiative, by which the US Food and Drug Administration (FDA) and device manufacturers collaborate to ensure the appropriate use of RWD/RWE to support regulatory decision-making.

View Article and Find Full Text PDF

Headaches account for up to 4.5% of emergency department visits, where they present a significant diagnostic challenge. While primary headaches are benign, secondary headaches can be life-threatening.

View Article and Find Full Text PDF

The disease severity of influenza is highly variable in humans, and one genetic determinant behind these differences is the IFITM3 gene. As an effector of the interferon response, IFITM3 potently blocks cytosolic entry of influenza A virus (IAV). Here, we reveal a novel level of inhibition by IFITM3 in vivo: We show that incorporation of IFITM3 into IAV particles competes with incorporation of viral hemagglutinin (HA).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed engineered arenaviruses for cancer vaccination that trigger strong immune responses in mice, targeting tumors effectively.
  • The therapy showed promising results by eliminating established solid tumors and providing protection against future tumor challenges in many of the treated mice.
  • Key findings indicate that combining different arenaviruses enhances immune activity and alters immune response preferences, allowing the body to better attack cancer cells.
View Article and Find Full Text PDF

Species' differences in cellular factors limit avian influenza A virus (IAV) zoonoses and human pandemics. The IAV polymerase, vPol, harbors evolutionary sites to overcome restriction and determines virulence. Here, we establish host ANP32A as a critical driver of selection, and identify host-specific ANP32A splicing landscapes that predict viral evolution.

View Article and Find Full Text PDF

Each new virus introduced into the human population could potentially spread and cause a worldwide epidemic. Thus, early quantification of epidemic spread is crucial. Real-time sequencing followed by Bayesian phylodynamic analysis has proven to be extremely informative in this respect.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction.

View Article and Find Full Text PDF

Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics.

View Article and Find Full Text PDF

The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization.

View Article and Find Full Text PDF

A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) are a focal component of HIV-1 vaccine design, yet basic aspects of their induction remain poorly understood. Here we report on viral, host and disease factors that steer bnAb evolution using the results of a systematic survey in 4,484 HIV-1-infected individuals that identified 239 bnAb inducers. We show that three parameters that reflect the exposure to antigen-viral load, length of untreated infection and viral diversity-independently drive bnAb evolution.

View Article and Find Full Text PDF

Background: Mucosal HIV-1 transmission predominantly results in a single transmitted/founder (T/F) virus establishing infection in the new host despite the generally high genetic diversity of the transmitter virus population. To what extent HIV-1 transmission is a stochastic process or driven by selective forces that allow T/F viruses best to overcome bottlenecks in transmission has not been conclusively resolved. Building on prior investigations that suggest HIV-1 envelope (Env) features to contribute in the selection process during transmission, we compared phenotypic virus characteristics of nine HIV-1 subtype B transmission pairs, six men who have sex with men and three male-to-female transmission pairs.

View Article and Find Full Text PDF

HIV-1 infection starts with fusion of the viral and the host cell membranes, a process mediated by the HIV-1 envelope glycoprotein trimer. The number of trimers required to complete membrane fusion, referred to as HIV-1 entry stoichiometry, remains under debate. A precise definition of HIV-1 entry stoichiometry is important as it reflects the efficacy of the viral entry process and steers the infectivity of HIV-1 virion populations.

View Article and Find Full Text PDF

Broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) are considered vital components of novel therapeutics and blueprints for vaccine research. Yet escape to even the most potent of these antibodies is imminent in natural infection. Measures to define antibody efficacy and prevent mutant selection are thus urgently needed.

View Article and Find Full Text PDF

An increasing number of broadly neutralizing antibodies (bnAbs) are considered leads for HIV-1 vaccine development and novel therapeutics. Here, we systematically explored the capacity of bnAbs to neutralize HIV-1 prior to and post-CD4 engagement and to block HIV-1 cell-cell transmission. Cell-cell spread is known to promote a highly efficient infection with HIV-1 which can inflict dramatic losses in neutralization potency compared to free virus infection.

View Article and Find Full Text PDF

Finding optimal dosing strategies for treating bacterial infections is extremely difficult, and improving therapy requires costly and time-intensive experiments. To date, an incomplete mechanistic understanding of drug effects has limited our ability to make accurate quantitative predictions of drug-mediated bacterial killing and impeded the rational design of antibiotic treatment strategies. Three poorly understood phenomena complicate predictions of antibiotic activity: post-antibiotic growth suppression, density-dependent antibiotic effects, and persister cell formation.

View Article and Find Full Text PDF

Infection is best described as a stochastic process. Whether a host becomes infected upon exposure has a strong random element. The same applies to cells exposed to virions.

View Article and Find Full Text PDF

HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling.

View Article and Find Full Text PDF

Background: Variable loops 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 perform two key functions: ensuring envelope trimer entry competence and shielding against neutralizing antibodies. While preserving entry functionality would suggest a high need for V1V2 sequence optimization and conservation, shielding efficacy is known to depend on a high flexibility of V1V2 giving rise to its substantial sequence variability. How entry competence of the trimer is maintained despite the continuous emergence of antibody escape mutations within V1V2 has not been resolved.

View Article and Find Full Text PDF

The spikes of the human immunodeficiency virus (HIV) mediate viral entry and are the most important targets for neutralizing antibodies. Each spike consists of three identical subunits. The role of the spike's subunits in antibody binding is not fully understood.

View Article and Find Full Text PDF

Antibodies binding to the surface of virions can lead to virus neutralisation. Different theories have been proposed to determine the number of antibodies that must bind to a virion for neutralisation. Early models are based on chemical binding kinetics.

View Article and Find Full Text PDF

The Human Immunodeficiency Virus (HIV) is one of the most threatening viral agents. This virus infects approximately 33 million people, many of whom are unaware of their status because, except for flu-like symptoms right at the beginning of the infection during the acute phase, the disease progresses more or less symptom-free for 5 to 10 years. During this asymptomatic phase, the virus slowly destroys the immune system until the onset of AIDS when opportunistic infections like pneumonia or Kaposi's sarcoma can overcome immune defenses.

View Article and Find Full Text PDF

Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse.

View Article and Find Full Text PDF

HIV virions infect cells by attaching to target cell receptors, fusing membranes with the cell and by finally releasing their genetic material into the target cells. Antibodies can hinder the infection by attaching to the HIV envelope glycoprotein trimers before or during attachment. The exact mechanisms and the quantitative requirements of antibody neutralization are still debated.

View Article and Find Full Text PDF