Publications by authors named "Carsten Korth"

Two structurally unrelated small molecule chemotypes, represented by compounds PAV-617 and PAV-951, with antiviral activity in cell culture against Mpox virus (formerly known as monkeypox virus) and human immunodeficiency virus (HIV) respectively, were studied for anti-cancer efficacy. Each exhibited apparent pan-cancer cytotoxicity with reasonable pharmacokinetics. Non-toxicity is demonstrated in a non-cancer cell line and in mice at doses achieving drug exposure at active concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new small molecule antiviral called PAV-431 that was discovered through a unique screening method targeting viral protein assembly.
  • This compound has shown effectiveness against various respiratory viruses in laboratory studies and in animal models, including coronaviruses and paramyxoviruses.
  • PAV-431 works by selectively targeting a modified protein complex involved in the viral life cycle, providing a potential new approach for treating respiratory viral infections without harming the host.
View Article and Find Full Text PDF

Aim: The disrupted-in-schizophrenia 1 (DISC1) protein is a key regulator at the intersection of major signaling pathways relevant for adaptive behavior. It is prone to posttranslational changes such as misassembly and aggregation but the significance of such transformations for human mental illness has remained unclear. We aimed to demonstrate the occurrence of DISC1 protein aggregates in patients with first-episode psychosis (FEP).

View Article and Find Full Text PDF

Patients diagnosed with neuropsychiatric disorders, such as autism and schizophrenia, suffer from disorganized speech. The disrupted-in-schizophrenia 1 (DISC1) protein pathway is considered a risk factor for the development of several psychiatric disorders and plays an important role in the dysregulation of dopamine (DA), which in turn plays an important role in the regulation of ultrasonic vocalizations (USVs) in rats. Moreover, the DISC1 protein pathway has been identified as a cause of social anhedonia, that is, a decrease in the drive for social interactions.

View Article and Find Full Text PDF

The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23).

View Article and Find Full Text PDF

Deficits in social interaction or social cognition are key phenotypes in a variety of chronic mental diseases, yet, their modeling and molecular dissection are only in their infancy. The Disrupted-in-Schizophrenia 1 (DISC1) signaling pathway is considered to play a role in different psychiatric disorders such as schizophrenia, depression, and biopolar disorders. DISC1 is involved in regulating the dopaminergic neurotransmission in, among others, the mesolimbic reward system.

View Article and Find Full Text PDF

Alterations in cognitive functions, social behaviors and stress reactions are commonly diagnosed in chronic mental illnesses (CMI). Animal models expressing mutant genes associated to CMI represent either rare mutations or those contributing only minimally to genetic risk. Non-genetic causes of CMI can be modeled by disturbing downstream signaling pathways, for example by inducing protein misassembly or aggregation.

View Article and Find Full Text PDF

We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious virus in multiple cell culture models for all six families of viruses causing most respiratory disease in humans. In animals this chemotype has been demonstrated efficacious for Porcine Epidemic Diarrhea Virus (a coronavirus) and Respiratory Syncytial Virus (a paramyxovirus).

View Article and Find Full Text PDF

Background: Neurofilament heavy (NfH) is a promising biomarker for neuro-axonal damage in Multiple Sclerosis (MS). We compared the performance of high-sensitivity serum-NfH immunoassays, with as aim to investigate the value of serum-NfH as biomarker for MS.

Methods: We measured serum-NfH in 76 MS patients with Simoa (one commercial, one in-house) or Luminex assays.

View Article and Find Full Text PDF

Objectives: The heterogeneity of Amyloid-beta (Aβ) plaque load in patients with Alzheimer's disease (AD) has puzzled neuropathology. Since brain Aβ plaque load does not correlate with cognitive decline, neurotoxic soluble Aβ oligomers have been championed as disease-causing agents in early AD. So far, investigating molecular interactions between soluble oligomeric Aβ and insoluble Aβ in vivo has been difficult because of the abundance of Aβ oligomer species and the kinetic equilibrium in which they coexist.

View Article and Find Full Text PDF

The ability of viruses to evolve several orders of magnitude faster than their host cells has enabled them to exploit host cellular machinery by selectively recruiting multiprotein complexes (MPCs) for their catalyzed assembly and replication. This hijacking may depend on alternative, 'moonlighting' functions of host proteins that deviate from their canonical functions thereby inducing cellular pathology. Here, we posit that if virus-induced cellular pathology is similar to that of other, unknown (non-viral) causes, the identification and molecular characterization of the host proteins involved in virus-mediated cellular pathology can be leveraged to decipher the non-viral disease-relevant mechanisms.

View Article and Find Full Text PDF

COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS).

View Article and Find Full Text PDF

Tools are generated by defined steps, fulfill distinct uses, and elicit affordances or mental representations. When the latter are recombined, they are perceived as "technical reasoning," resulting in novel tools when executed. They can be exchanged, varied, and selected between individuals in a cumulative social process.

View Article and Find Full Text PDF

Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer's disease (AD) 2-3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer's disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia.

View Article and Find Full Text PDF

The naturalisation of mental disorders-ie, their translation into measurable and preferably molecular variables-has not progressed despite breath-taking discoveries in the neurosciences. We ask whether self-inflicted limits exist among psychiatrists that would prevent them from supporting an imaginary perfect blood test with diagnostic specificity, sensitivity, and validity, which was able to replace clinical diagnosis completely. Although relevant for many mental disorders, we use the clinical disease category schizophrenia here as an example to discuss factors that oppose the naturalisation of clinical disease categories.

View Article and Find Full Text PDF

Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion.

View Article and Find Full Text PDF

Background: Interaction of nuclear-distribution element-like 1 with disrupted-in-schizophrenia 1 protein is crucial for neurite outgrowth/neuronal migration, and this interaction competitively inhibits nuclear-distribution element-like 1 peptidase activity. Nuclear-distribution element-like 1 activity is reduced in antipsychotic-naïve first-episode psychosis and in medicated chronic schizophrenia, with even lower activity in treatment-resistant schizophrenia.

Aims: The purpose of this study was to investigate in a rat model overexpressing human non-mutant disrupted-in-schizophrenia 1, with consequent dysfunctional disrupted-in-schizophrenia 1 signaling, the relation of nuclear-distribution element-like 1 activity with neurodevelopment and dopamine-related phenotypes.

View Article and Find Full Text PDF

The disrupted-in-schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D receptor (D R) that inhibits agonist-induced D R internalisation.

View Article and Find Full Text PDF

Currently, the clinical diagnosis of schizophrenia relies solely on self-reporting and clinical interview, and likely comprises heterogeneous biological subsets. Such subsets may be defined by an underlying biology leading to solid biomarkers. A transgenic rat model modestly overexpressing the full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1) protein (tgDISC1 rat) was generated that defines such a subset, inspired by our previous identification of insoluble DISC1 protein in post mortem brains from patients with chronic mental illness.

View Article and Find Full Text PDF

Synaptic pruning is a critical refinement step during neurodevelopment, and schizophrenia has been associated with overpruning of cortical dendritic spines. Both human studies and animal models implicate disrupted-in-schizophrenia 1 (DISC1) gene as a strong susceptibility factor for schizophrenia. Accumulating evidence supports the involvement of DISC1 protein in the modulation of synaptic elimination during critical periods of neurodevelopment and of dopamine D2-receptor-mediated signaling during adulthood.

View Article and Find Full Text PDF

In humans, mutations in the Disrupted-in-schizophrenia 1 (DISC1) gene have been related to psychiatric disorders, including symptoms of abnormal cognitive and emotional behaviors. In our previous studies, overexpression of the human DISC1 gene in rats resulted in schizophrenia-like phenotypes showing deficits in motor learning, impaired cognitive function and dysfunctions of the dopamine system. Here we asked, whether the DISC1 overexpression affects locomotor activity in the open field (OF), anxiety in the elevated plus-maze (EPM), depression-related behavior in the forced swim test (FST), and attention-like/short-term working-memory in the spontaneous alternation behavior (SAB) in the T-maze in transgenic DISC1 (tgDISC1) rats and littermate controls (WT).

View Article and Find Full Text PDF

Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI.

View Article and Find Full Text PDF

A balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1) gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and schizophrenia. Since the discovery of this translocation, many studies have focused on understating the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein could be behind the neurobiology of mental conditions, but not so many studies have focused in the mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying relevant pathways directly affected by DISC1 loss of function.

View Article and Find Full Text PDF

Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations.

View Article and Find Full Text PDF