Publications by authors named "Carsten Dominik"

In the widely accepted 'unified model' solution of the classification puzzle of active galactic nuclei, the orientation of a dusty accretion torus around the central black hole dominates their appearance. In 'type-1' systems, the bright nucleus is visible at the centre of a face-on torus. In 'type-2' systems the thick, nearly edge-on torus hides the central engine.

View Article and Find Full Text PDF

Carbon-enriched rocky exoplanets have been proposed to occur around dwarf stars as well as binary stars, white dwarfs, and pulsars. However, the mineralogical make up of such planets is poorly constrained. We performed high-pressure high-temperature laboratory experiments ( = 1-2 GPa,  = 1523-1823 K) on chemical mixtures representative of C-enriched rocky exoplanets based on calculations of protoplanetary disk compositions.

View Article and Find Full Text PDF

In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk.

View Article and Find Full Text PDF

Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extrasolar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory has detected emission lines from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface, hinting at a water ice reservoir equivalent to several thousand Earth oceans in mass.

View Article and Find Full Text PDF

Young, gas-rich proto-planetary disks orbiting around solar-type young stars represent a crucial phase in disk evolution and planetary formation. Of particular relevance is to observationally track the evolution of the gas, which governs the overall evolution of the disk and is eventually dispersed. However, the bulk of the mass resides in the plane, which is so cold and dense that virtually all heavy-element-bearing molecules freeze out onto the dust grains and disappear from the gas phase.

View Article and Find Full Text PDF