Obesity is associated with insulin resistance (IR) and hepatosteatosis. Understanding the link between IR and hepatosteatosis could be relevant to chronic clinical outcomes. The objective of this study was to quantitatively assess lipid deposition (fractional lipid mass, fLM) and composition (fraction of polyunsaturated lipids, fPUL and mean chain length, MCL) in livers of ob/ob mice, a genetic model of obesity and mild diabetes, and ob/+ heterozygous control animals in a noninvasive manner using (1) H-MRS at 9.
View Article and Find Full Text PDFObject: Hepatic lipid accumulation is associated with nonalcoholic fatty liver disease, and the metabolic syndrome constitutes an increasing medical problem. In vivo proton magnetic resonance spectroscopy ((1)H MRS) allows the assessment of hepatic lipid levels noninvasively and also yields information on the fat composition due to its high spectral resolution.
Materials And Methods: We applied (1)H MRS at 9.
Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress β-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase.
View Article and Find Full Text PDFInsulin resistance is a central feature of type II diabetes and is associated with alterations in skeletal muscle lipid metabolism, which manifest themselves, in part, in increased intramyocellular lipid (IMCL) accumulation. The objective of this study was to assess noninvasively the levels of IMCL longitudinally in the tibialis anterior muscle of Lep(ob) /Lep(ob) (ob/ob) mice, a genetic model of obesity and mild diabetes, and Lep(ob) /+ (ob/+) heterozygous control animals, using (1) H MRS at 9.4 T.
View Article and Find Full Text PDFCell surface N-glycoproteins provide a key interface of cells to their environment and therapeutic entry points for drug and biomarker discovery. Their comprehensive description denotes therefore a formidable challenge. The β-cells of the pancreas play a crucial role in blood glucose homeostasis, and disruption of their function contributes to diabetes.
View Article and Find Full Text PDFInsulin secretion from pancreatic beta cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1alpha, a transcription factor implicated in promoting a glycolytic form of metabolism.
View Article and Find Full Text PDFSNARE proteins have been classified as vesicular (v)- and target (t)-SNAREs and play a central role in the various membrane interactions in eukaryotic cells. Based on the Paramecium genome project, we have identified a multigene family of at least 26 members encoding the t-SNARE syntaxin (PtSyx) that can be grouped into 15 subfamilies. Paramecium syntaxins match the classical build-up of syntaxins, being 'tail-anchored' membrane proteins with an N-terminal cytoplasmic domain and a membrane-bound single C-terminal hydrophobic domain.
View Article and Find Full Text PDF