Hybrid multienzyme systems composed of polyketide synthase (PKS) and nonribosomal polypeptide synthetase (NRPS) modules direct the biosynthesis of clinically valuable natural products in bacteria. The fidelity of this process depends on specific recognition between successive polypeptides in each assembly line-interactions that are mediated by terminal 'docking domains'. We have identified a new family of N-terminal docking domains, exemplified by TubCdd from the tubulysin system of Angiococcus disciformis An d48.
View Article and Find Full Text PDFDomains within the multienzyme polyketide synthases are linked by noncatalytic sequences of variable length and unknown function. Recently, the crystal structure was reported of a portion of the linker between the acyltransferase (AT) and ketoreductase (KR) domains from module 1 of the erythromycin synthase (6-deoxyerythronolide B synthase), as a pseudodimer with the adjacent ketoreductase (KR). On the basis of this structure, the homologous linker region between the dehydratase (DH) and enoyl reductase (ER) domains in fully reducing modules has been proposed to occupy a position on the periphery of the polyketide synthases complex, as in porcine fatty acid synthase.
View Article and Find Full Text PDFThe 1.4-A crystal structure of the oxidized state of a Y25S variant of cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is described. It shows that loss of Tyr(25), a ligand via its hydroxy group to the iron of the d(1) heme in the oxidized (as prepared) wild-type enzyme, does not result in a switch at the c heme of the unusual bishistidinyl coordination to the histidine/methionine coordination seen in other conformations of the enzyme.
View Article and Find Full Text PDFParacoccus pantotrophus cytochrome cd(1) is an enzyme of bacterial respiration, capable of using nitrite in vivo and also hydroxylamine and oxygen in vitro as electron acceptors. We present a comprehensive analysis of the steady state kinetic properties of the enzyme with each electron acceptor and three electron donors, pseudoazurin and cytochrome c(550), both physiological, and the non-physiological horse heart cytochrome c. At pH 5.
View Article and Find Full Text PDF