Publications by authors named "Carsten D Brandt"

The first dinuclear iron(II) complexes of any 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazole ligands, [Fe(II)2(adpt)2(H2O)1.5(CH3CN)2.5](BF4)4 and [Fe(II)2(pldpt)2(H2O)2(CH3CN)2](BF4)4, are presented [where adpt is 4-amino-3,5-di(2-pyridyl)-4H-1,2,4-triazole and pldpt is 4-pyrrolyl-3,5-di(2-pyridyl)-4H-1,2,4-triazole].

View Article and Find Full Text PDF

The first compound with a Mn(IV)-I bond has successfully been prepared by oxidation of a manganese(iii) corrole with molecular iodine and was structurally characterized by X-ray diffraction.

View Article and Find Full Text PDF

Etheral solutions of free base tripyrrins (HTrpy) were prepared by treatment of nickel isocyanate complexes (TrpyNiNCO) with excess cyanide. From these solutions sensitive metallotripyrrins with cobalt(II), iron(II), and manganese(II) ions (TrpyMX) and with a choice of external ligands X could be obtained in pure, crystalline form. Four cobalt and one iron chelate were characterized by X-ray crystallography.

View Article and Find Full Text PDF

Neutral transition metal complexes of different alpha,omega-dimethyltripyrrins TrpyMX with M = Cu(II) and Zn(II) have been prepared with a variety of anionic halogeno and pseudohalogeno ligands X, and have been studied with respect to coordination modes and structural distortion. Only four- and five-coordinate species have been observed throughout the series. All four-coordinate species display unstrained, but distorted tetrahedral or strained and distorted square-planar coordination environments for zinc(II) and copper(II) species, respectively, thus following the expectations from simple ligand field arguments.

View Article and Find Full Text PDF

Sterically hindered nickel- tripyrrins [Ni(trpy)X] with different di-, tri- and tetradentate anions X have been prepared with the aim of finding coordination polymers formed by self-association. The syntheses were performed by simple ligand-exchange reactions and proceeded successfully with the pseudohalides CN(-), OCN(-), SCN(-), SeCN(-), N(CN)(2) (-) (dicyanoamido, dca) and C(CN)(3) (-) (tricyanomethanido, tcm), the cyanidometallates [Ag(CN)(2)](-) and [Ni(CN)(4)](2-) and the salicylate anion (sal(-)). X-ray crystallographic analyses revealed that the complexes with cyanido and isocyanato ligands, as well as the compound with a salicylato ligand, are prototypes for structurally distinct monomeric species in the solid state, whereas one-dimensional coordination polymers or supramolecular three-dimensional networks are formed from all other combinations.

View Article and Find Full Text PDF

The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22.

View Article and Find Full Text PDF

The reactions of [Rh2(kappa2-acac)2(mu-CPh2)2(mu-PR3)] (PR3= PMe34, PMe2Ph 7, PEt38) with an equimolar amount of Me3SiX (X = Cl, Br, I) afforded the unsymmetrical complexes [Rh2X(kappa2-acac)(mu-CPh2)2(mu-PR3)]5, 9-12, which contain the phosphine in a semi-bridging coordination mode. From 4 and excess Me3SiCl, the tetranuclear complex [[Rh2Cl(mu-Cl)(mu-CPh2)2(mu-PMe3)]2]6 was obtained. In contrast, the reaction of 4 with an excess of Me3SiX (X = Br, I) yielded the dinuclear complexes [Rh2X2(mu-CPh2)2(mu-PMe3)]13, 14 in which, as shown by the X-ray crystal structure analysis of 14, the bridging phosphine is coordinated in a truly symmetrical bonding mode.

View Article and Find Full Text PDF

The reactions of [Rh(2)Cl(kappa(2)-acac)(mu-CPh(2))(2)(mu-SbiPr(3))] (3) and [Rh(2)(kappa(2)-acac)(2)(mu-CPh(2))(2)(mu-SbiPr(3))] (4) with PMe(3) lead to exchange of the bridging ligand and afford the novel PMe(3)-bridged counterparts 5 and 6, in which the phosphane occupies a semibridging (5) or a doubly bridging (6) position. In both cases, the bonding mode was confirmed crystallographically. Treatment of 6 with CO causes a shift of PMe(3) from a bridging to a terminal position and gives the unsymmetrical complex [(kappa(2)-acac)Rh(mu-CPh(2))(2)(mu-CO)Rh(PMe(3))(kappa(2)-acac)] (7).

View Article and Find Full Text PDF

Di(p-tolyl)diazomethane reacts with the tripyrrinate TrpyPdOAc(F) 1 after activation with NaBAr(F) to yield the first stable Pd(II) complex 2 of a non-Arduengo type carbene ligand, which could be characterised by X-ray crystallography.

View Article and Find Full Text PDF

The treatment of the strained complex TrpyPdOAc(F) 1 with NaBAr(F), followed by the addition of trimethylphosphine, yields the stable cationic 16VE- or 18VE-complexes 3 and 4, depending on the amount of phosphane added.

View Article and Find Full Text PDF

The reaction of [[RhCl(C(8)H(14))(2)](2)] (2) with iPr(2)PCH(2)CH(2)C(6)H(5) (L(1)) led, via the isolated dimer [[RhCl(C(8)H(14))(L(1))](2)] (3), to a mixture of three products 4 a-c, of which the dinuclear complex [[RhCl(L(1))(2)](2)] (4 a) was characterized by Xray crystallography. The mixture of 4a-c reacts with CO, ethene, and phenylacetylene to give the square-planar compounds trans-[RhCl(L)(L(1))(2)] (L=CO (5), C(2)H(4) (6), C=CHPh (9)). The corresponding allenylidene(chloro) complex trans-[RhCl(=C=C=CPh(2))(L(1))(2)] (11), obtained from 4 a-c and HC triple bond CC(OH)Ph(2) via trans-[RhCl[=C=CHC(OH)Ph(2)](L(1))(2)] (10), could be converted stepwise to the related hydroxo, cationic aqua, and cationic acetone derivatives 12-14, respectively.

View Article and Find Full Text PDF

The dinuclear complex [Rh2I2(mu-CPh2)2(mu-PMe3)] was prepared from the Rh2(acac)2 counterpart and Me3SiI and shown crystallographically to contain the PMe3 ligand in a truly symmetrical bridging position; a new synthetic route to migrate more bulky phosphines such as PPh3 and PiPr3 from a terminal into a bridging site is also described.

View Article and Find Full Text PDF

The metalation reactions of the 2,2'-bidipyrrin 4 with different rhodium(I) precursors yield the complexes 5 and 6 and the unusual corrinoid 7, depending only on the type of the ancillary ligand employed.

View Article and Find Full Text PDF

Reaction of HCl with [RhCl(C2H4)(PR3)]2 affords the dinuclear alkylrhodium(III) complex [RhCl2(C2H5)(PR3)]2, the structure of which has been determined crystallographically. PR3 is the formerly unknown trialkyl phosphine tBu2PCH2CH2C6H3-2,6-Me2, prepared in three steps from tBuPCl2. Treatment of the title compound with CO gives the mononuclear rhodium dicarbonyl cis-[RhCl(CO)2(PR3)], being the first fully characterized complex of this type.

View Article and Find Full Text PDF