The concept of coherence is of fundamental importance for describing the physical characteristics of light and for evaluating the suitability for experimental application. In the case of pulsed laser sources, the pulse-to-pulse coherence is usually considered for a judgment of the compressibility of the pulse train. This type of coherence is often lost during propagation through a highly nonlinear medium, and pulses prove incompressible despite multioctave spectral coverage.
View Article and Find Full Text PDFWe demonstrate an up to now unrecognized and very effective mechanism which prevents filament collapse and allows persistent self-guiding propagation retaining a large portion of the optical energy on axis over unexpected long distances. The key ingredient is the possibility of continuously leaking energy into the normal dispersion regime via the emission of resonant radiation. The frequency of the radiation is determined by the dispersion dynamically modified by photogenerated plasma, thus allowing us to excite new frequencies in spectral ranges which are otherwise difficult to access.
View Article and Find Full Text PDFWe reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude.
View Article and Find Full Text PDFFiber-optical rogue waves appear as rare but extreme events during optical supercontinuum generation in photonic crystal fibers. This process is typically initiated by the decay of a high-order fundamental soliton into fundamental solitons. Collisions between these solitons as well as with dispersive radiation affect the soliton trajectory in frequency and time upon further propagation.
View Article and Find Full Text PDFUsing experimental data from three different rogue wave supporting systems, determinism, and predictability of the underlying dynamics are evaluated with methods of nonlinear time series analysis. We included original records from the Draupner platform in the North Sea as well as time series from two optical systems in our analysis. One of the latter was measured in the infrared tail of optical fiber supercontinua, the other in the fluence profiles of multifilaments.
View Article and Find Full Text PDFWe report on the direct experimental observation of pulse-splitting dynamics along a femtosecond filament. The fundamental pulse experiences a significant self-shortening during the propagation leading to pulse durations of 5.3 fs, corresponding to sub-3 cycles, which is measured without external pulse compression.
View Article and Find Full Text PDFA novel adjustable adiabatic soliton compression scheme is presented, enabling a coherent pulse source with pedestal-free, few-cycle pulses in the infrared or midinfrared regime. This scheme relies on interaction of a dispersive wave and a soliton copropagating at nearly identical group velocities in a fiber with enhanced infrared transmission. The compression is achieved directly in one stage, without the necessity of an external compensation scheme.
View Article and Find Full Text PDFA new scheme for supercontinuum generation covering more than one octave and exhibiting extraordinary high coherence properties has recently been proposed [Phys. Rev. Lett.
View Article and Find Full Text PDFThe transient appearance of bright spots in the beam profile of optical filaments formed in xenon is experimentally investigated. Fluence profiles are recorded with high-speed optical cameras at the kilohertz repetition rate of the laser source. A statistical analysis reveals a thresholdlike appearance of heavy-tailed fluence distributions together with the transition from single to multiple filamentation.
View Article and Find Full Text PDFWe demonstrate a novel method for supercontinuum generation in an optical fiber based on two-color pumping with a delay and a group velocity matching. The scheme relies on the enhanced cross-phase-modulation at an intensity induced refractive index barrier between a dispersive wave and a soliton. The generation mechanism neither incorporates soliton fission nor a modulation instability and therefore exhibits extraordinary coherence properties, enabling the temporal compression of octave bandwidth into a short pulse.
View Article and Find Full Text PDFThe concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems.
View Article and Find Full Text PDFWe discuss the influence of the higher-order Kerr effect (HOKE) in wide bandgap solids at extreme intensities below the onset of optically induced damage. Using different theoretical models, we employ multiphoton absorption rates to compute the nonlinear refractive index by a Kramers-Kronig transform. Within this theoretical framework we provide an estimate for the appearance of significant deviations from the standard optical Kerr effect predicting a linear index change with intensity.
View Article and Find Full Text PDFSaturation of the intensity dependence of the refractive index is directly computed from ionization rates via a Kramers-Kronig transform. The linear intensity dependence and its dispersion are found to be in excellent agreement with complete quantum mechanical orbital computations. Higher-order terms concur with solutions of the time-dependent Schrödinger equation.
View Article and Find Full Text PDFCompeting nonlinear optical effects that act on femtosecond laser pulses propagating in a self-generated light filament may give rise to a pronounced radial beam deformation, similar to the z-pinch contraction of pulsed high-current discharges. This self-generated spatial beam contraction is accompanied by a pulse break-up that can be beneficially exploited for on-axis temporal compression of the pulse. The pinching mechanism therefore explains the recently observed self-compression and the complicated spatio-temporal shapes typical for filament propagation experiments.
View Article and Find Full Text PDF