Publications by authors named "Carrie Sharoff"

Purpose: Exercise training alters protein abundance in the muscle of healthy individuals, but the effect of exercise on these proteins in patients with type 2 diabetes (T2D) is unknown. The aim of this study was to determine how exercise training alters the skeletal muscle proteome in patients with T2D.

Methods: Biopsies of the vastus lateralis were obtained before and after 4 wk of exercise training in six patients with T2D (54 ± 4 yr; body mass index (BMI), 29 ± 2) and six age- and BMI-matched control subjects (48 ± 2; BMI, 28 ± 3) studied at the baseline.

View Article and Find Full Text PDF

Exercise and metformin may prevent or delay Type 2 diabetes by, in part, raising the capacity for fat oxidation. Whether the addition of metformin has additive effects on fat oxidation during and after exercise is unknown. Therefore, the purpose of this study was to evaluate the effect of metformin on substrate oxidation during and after exercise.

View Article and Find Full Text PDF

Results from the Diabetes Prevention Program highlight the effectiveness of metformin or regular physical activity in the prevention of type 2 diabetes. Independently, metformin and exercise increase insulin sensitivity, but they have not been studied in combination. To assess the combined effects, insulin-resistant subjects (n = 9) matched for weight, body fat, and aerobic fitness were studied before any treatment (B), after 2-3 wk of 2,000 mg/day metformin (MET), and after metformin plus 40 min of exercise at 65% Vo(2peak) (MET + Ex).

View Article and Find Full Text PDF

When previously sedentary men and women follow exercise training programs with ad libitum feeding, men lose body fat, but women do not. The purpose of this study was to evaluate whether this observation could be related to sex differences in the way energy-regulating hormones and appetite perception respond to exercise. Eighteen (9 men, 9 women) overweight/obese individuals completed four bouts of exercise with energy added to the baseline diet to maintain energy balance (BAL), and four bouts without energy added to induce energy deficit (DEF).

View Article and Find Full Text PDF

One bout of exercise enhances insulin-stimulated glucose uptake (insulin action), but the effect is blunted by consumption of carbohydrate-containing food after exercise. The independent roles of energy and carbohydrate in mediating post-exercise insulin action have not been systematically evaluated in humans. The purpose of this study was to determine if varying carbohydrate availability, with energy intake held constant, mediates post-exercise insulin action.

View Article and Find Full Text PDF

Individually, exercise and the drug metformin have been shown to prevent or delay type 2 diabetes. Metformin mildly inhibits complex I of the electron transport system and may impact aerobic capacity in people exercising while taking metformin. The purpose of the study was to evaluate the effects of metformin on maximal aerobic capacity in healthy individuals without mitochondrial dysfunction.

View Article and Find Full Text PDF

Energy surplus raises circulating concentrations of leptin and insulin while lowering plasma ghrelin. Exercise has the opposite effects. The purpose of this study was to determine whether exercise counters the hormonal effects of energy surplus independent of changes in energy balance.

View Article and Find Full Text PDF

The nutritional environment surrounding an exercise bout modulates post-exercise insulin action. The purpose of this study was to determine how timing energy and carbohydrate replacement proximate to an exercise bout influences exercise-enhanced insulin action. To create an appropriate baseline, sensitivity to insulin was reduced in 9 healthy young men (n=6) and women (n=3) by 2 days of energy surplus and detraining.

View Article and Find Full Text PDF

During exercise, obese individuals oxidize less glycogen and more fat than their lean counterparts, but the shift in substrate use may be mediated by insulin resistance rather than body fat per se. In addition, individuals with Type 2 diabetes are not resistant to contraction-mediated glucose uptake during exercise, but in vivo studies uncomplicated by hyperglycemia are lacking. The purpose of this study was to compare blood glucose uptake and the balance between carbohydrate and fat utilization during exercise in insulin-resistant (IR) and insulin-sensitive (IS) women of equivalent body fatness and maximal oxygen consumption (VO2 max).

View Article and Find Full Text PDF

To assess the roles of endogenous estrogen (E2) and progesterone (P4) in regulating exercise carbohydrate use, we used pharmacological suppression and replacement to create three distinct hormonal environments: baseline (B), with E2 and P4 low; estrogen only (E), with E2 high and P4 low; and estrogen/progesterone (E + P), with E2 and P4 high. Blood glucose uptake (R(d)), total carbohydrate oxidation (CHO(ox)), and estimated muscle glycogen utilization (EMGU) were assessed during 60 min of submaximal exercise by use of stable isotope dilution and indirect calorimetry in eight eumenorrheic women. Compared with B (1.

View Article and Find Full Text PDF