There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost.
View Article and Find Full Text PDFThe cyanobacterial lectin scytovirin (SVN) binds with high affinity to mannose-rich oligosaccharides on the envelope glycoprotein (GP) of a number of viruses, blocking entry into target cells. In this study, we assessed the ability of SVN to bind to the envelope GP of Zaire Ebola virus (ZEBOV) and inhibit its replication. SVN interacted specifically with the protein's mucin-rich domain.
View Article and Find Full Text PDFThe antiviral lectins griffithsin (GRFT), cyanovirin-N (CV-N), and scytovirin (SVN), which inhibit several enveloped viruses, including lentiviruses, were examined for their ability to inhibit entry mediated by Env proteins of delta- and gammaretroviruses. The glycoproteins from human T-cell leukemia virus type 1 (HTLV-1) were resistant to the antiviral effects of all three lectins. For gammaretroviruses, CV-N inhibited entry mediated by some but not all of the envelopes examined, whereas GRFT and SVN displayed only little or no effect.
View Article and Find Full Text PDFHepatitis C virus (HCV) infection is a significant public health problem with over 170,000,000 chronic carriers and infection rates increasing worldwide. Chronic HCV infection is one of the leading causes of hepatocellular carcinoma which was estimated to result in ∼10,000 deaths in the United States in the year 2011. Current treatment options for HCV infection are limited to PEG-ylated interferon alpha (IFN-α), the nucleoside ribavirin and the recently approved HCV protease inhibitors telaprevir and boceprevir.
View Article and Find Full Text PDFTo prevent sexually transmitted HIV, the most desirable active ingredients of microbicides are antiretrovirals (ARVs) that directly target viral entry and avert infection at mucosal surfaces. However, most promising ARV entry inhibitors are biologicals, which are costly to manufacture and deliver to resource-poor areas where effective microbicides are urgently needed. Here, we report a manufacturing breakthrough for griffithsin (GRFT), one of the most potent HIV entry inhibitors.
View Article and Find Full Text PDFCompounds that stabilize p53 could suppress tumors providing a additional tool to fight cancer. Mdm2, and the human ortholog, Hdm2 serve as ubiquitin E3 ligases and target p53 for ubiquitylation and degradation. Inhibition of Hdm2 stabilizes p53, inhibits cell proliferation and induces apoptosis.
View Article and Find Full Text PDFInfluenza A/New Caledonia/20/99 (H1N1) virus was studied for development of resistance to cyanovirin-N (CVN). CVN neutralizes virus infectivity by binding to specific high-mannose oligosaccharides on the viral haemagglutinin 1 (HA1) subunit. During virus adaptation to mice in the absence of CVN treatment the virus became resistant to CVN (CVN-MR virus), as did virus passaged in cell culture in the presence of CVN (CVN-R virus).
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2003
The novel antiviral protein cyanovirin-N (CV-N) was initially discovered based on its potent activity against the human immunodeficiency virus (HIV). Subsequent studies identified the HIV envelope glycoproteins gp120 and gp41 as molecular targets of CV-N. More recently, mechanistic studies have shown that certain high-mannose oligosaccharides (oligomannose-8 and oligomannose-9) found on the HIV envelope glycoproteins comprise the specific sites to which CV-N binds.
View Article and Find Full Text PDF