Publications by authors named "Carrie Poon"

Article Synopsis
  • Ubiquitin modifications play a crucial role in altering protein function and stability, impacting cell survival, especially during stress like ischemic stroke.
  • In a study using a proteomics approach on mice, researchers identified 198 proteins that were ubiquitinated post-stroke, many of which are vital for the structure of glutamatergic neurons' postsynaptic density (PSD).
  • The study revealed that ubiquitination affects kinase activities associated with neuronal cell injury, with specific kinases showing altered activities after stroke; removing ubiquitin reversed these changes, highlighting its critical role in regulating kinases during ischemic injury.
View Article and Find Full Text PDF

Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke.

View Article and Find Full Text PDF

Stroke is an acute neurological disease with a strong inflammatory component that can be regulated by the intestinal microbiota and intestinal immune cells. Although stroke has been shown to alter immune cell populations in the gut, the dynamics of cell trafficking have not been elucidated. To study the trafficking of gut-derived immune cells after stroke, we used mice expressing the photoconvertible protein Kikume Green-Red, which turns form green to red when exposed to violet light.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion increases intraneuronal levels of ubiquitinated proteins, but the factors driving ubiquitination and whether it results from altered proteostasis remain unclear. To address these questions, we used in vivo and in vitro models of cerebral ischemia-reperfusion, in which hippocampal slices were transiently deprived of oxygen and glucose to simulate ischemia followed by reperfusion, or the middle cerebral artery was temporarily occluded in mice. We found that post-ischemic ubiquitination results from two key steps: restoration of ATP at reperfusion, which allows initiation of protein ubiquitination, and free radical production, which, in the presence of sufficient ATP, increases ubiquitination above pre-ischemic levels.

View Article and Find Full Text PDF

Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells.

View Article and Find Full Text PDF

Background and Purpose- Commensal gut bacteria have a profound impact on stroke pathophysiology. Here, we investigated whether modification of the microbiota influences acute and long-term outcome in mice subjected to stroke. Methods- C57BL/6 male mice received a cocktail of antibiotics or single antibiotic.

View Article and Find Full Text PDF

Post-transcriptional regulation by microRNAs (miRNAs) is essential for complex molecular responses to physiological insult and disease. Although many disease-associated miRNAs are known, their global targets and culminating network effects on pathophysiology remain poorly understood. We applied Argonaute (AGO) crosslinking immunoprecipitation (CLIP) to systematically elucidate altered miRNA-target interactions in brain following ischemia and reperfusion (I/R) injury.

View Article and Find Full Text PDF

Stroke is a devastating disease with a strong inflammatory component. It has been shown that part of this response is mediated by IL17+ γδT cells. γδT cells constitute a lymphocyte population with innate features that mainly populates epithelial surfaces including skin, intestine, and airways.

View Article and Find Full Text PDF

There is interest in pharmacologic preconditioning for end-organ protection by targeting the HIF system. This can be accomplished by inhibition of prolyl 4-hydroxylase (PHD). GSK360A is an orally active PHD inhibitor that has been previously shown to protect the failing heart.

View Article and Find Full Text PDF

Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO) or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1) sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2) complex active place avoidance learning (APA) and simple passive avoidance retention (PA).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) frequently leads to epilepsy. The process of epileptogenesis - the development of that seizure state - is still poorly understood, and effective antiepileptogenic treatments have yet to be identified. The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy, but has not been extensively tested for its efficacy in preventing the development of the seizure state, and certainly not within the context of TBI-induced epileptogenesis.

View Article and Find Full Text PDF