Publications by authors named "Carrie L Yochum"

The Eph family of receptor tyrosine kinases play key roles in both the patterning of the developing nervous system and neural plasticity in the mature brain. To determine functions of ephrin-A5, a GPI-linked ligand to the Eph receptors, in animal behavior regulations, we examined effects of its inactivation on male mouse aggression. When tested in the resident-intruder paradigm for offensive aggression, ephrin-A5-mutant animals (ephrin-A5(-/-)) exhibited severe reduction in conspecific aggression compared to wild-type controls.

View Article and Find Full Text PDF

The Eph receptors and their ligands, the ephrins, play an important role during neural development. In particular, ephrin-A5 is highly expressed in the developing nervous system in several brain regions including the olfactory bulb, frontal cortex, striatum and hypothalamus. Although a number of studies have characterized the expression of ephrin-A5 in these regions, very little is known about the functional consequences that might follow alterations in the expression of this ligand.

View Article and Find Full Text PDF

Although the etiology of autism is unclear, disruptions of the dopaminergic and serotonergic systems have been associated with the disorder. Based on behavioral differences observed in the BALB/c strain of mice in comparison to other strains, notably, C57BL/6J mice, it has been suggested that the BALB/c strain may serve as an animal model of autism. However, to date, most work investigating neural and behavioral abnormalities in this strain has been performed in adult animals.

View Article and Find Full Text PDF

Autism is a heterogeneous, behaviorally defined developmental disorder with unknown etiology but thought to be the result of environmental insult acting upon the developing brain of a genetically susceptible individual. Approximately 30% of individuals with autism have normal development up to the age of about 30 months after which they experience behavioral regression and lose previously acquired motor, cognitive and social skills. Early post-natal toxicant administration to mice has been used to model autistic regression.

View Article and Find Full Text PDF

Sodium valproate (VPA) administered to neonatal mice causes cognitive and motor deficits similar to those observed in humans with autism. In an effort to further evaluate similarities between early VPA exposure and autism, the present study examined treated mice for deficits in social behavior and neuronal damage. BALB/c mice injected on P14 with 400 mg/kg VPA engaged in fewer social interactions (including ano-genital sniffs, allogrooming, and crawl-under/over behaviors) than control mice.

View Article and Find Full Text PDF