Publications by authors named "Carrie Keck"

Purpose: To evaluate the therapeutic efficacy of two antiepileptic compounds, RWJ-333369 and RWJ-333369-A in a well-established experimental model of lateral fluid percussion (FP) traumatic brain injury (TBI) in the rat.

Methods: Anethestized Male Sprague-Dawley rats (n=227) were subjected to lateral FP brain injury or sham-injury. Animals were randomized to receive treatment with RWJ-333369 (60 mg/kg, p.

View Article and Find Full Text PDF

Axonal injury is a hallmark of traumatic brain injury (TBI) and is associated with a poor clinical outcome. Following central nervous system injury, axons regenerate poorly, in part due to the presence of molecules associated with myelin that inhibit axonal outgrowth, including myelin-associated glycoprotein (MAG). The involvement of MAG in neurobehavioral deficits and tissue loss following experimental TBI remains unexplored and was evaluated in the current study using an MAG-specific monoclonal antibody (mAb).

View Article and Find Full Text PDF

We sought to evaluate the potential of C17.2 neural progenitor cells (NPCs) engineered to secrete glial cell line-derived neurotrophic factor (GDNF) to survive, differentiate and promote functional recovery following engraftment into the brains of adult male Sprague-Dawley rats subjected to lateral fluid percussion brain injury. First, we demonstrated continued cortical expression of GDNF receptor components (GFRalpha-1, c-Ret), suggesting that GDNF could have a physiological effect in the immediate post-traumatic period.

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) have been shown to be a promising therapy for cell replacement and gene transfer in neurological diseases including traumatic brain injury (TBI). However, NPCs often survive poorly after transplantation despite immunosuppression, and the mechanisms of graft cell death are unknown. In this study, we evaluated caspase- and calpain-mediated mechanisms of cell death of neonatal mouse C17.

View Article and Find Full Text PDF

Purpose: Although many previous studies have indicated that the acute inflammatory response following traumatic brain injury (TBI) is detrimental, inflammation may also positively influence outcome in the more chronic post-injury recovery period. We evaluated the effects of monoclonal antibodies (mAB), neutralizing either IL-6 (IL-6 mAB) or TNF-alpha (TNF mAB), administered intracerebroventricularly (i.c.

View Article and Find Full Text PDF