Proteins in the RAS family are important regulators of cellular signaling and, when mutated, can drive cancer pathogenesis. Despite considerable effort over the last 30 years, RAS proteins have proven to be recalcitrant therapeutic targets. One approach for modulating RAS signaling is to target proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1).
View Article and Find Full Text PDFUnlabelled: Myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family of proteins that when overexpressed is associated with high tumor grade, poor survival, and resistance to chemotherapy. Mcl-1 is amplified in many human cancers, and knockdown of Mcl-1 using RNAi can lead to apoptosis. Thus, Mcl-1 is a promising cancer target.
View Article and Find Full Text PDFReplication protein A (RPA) is an essential single-stranded DNA (ssDNA)-binding protein that initiates the DNA damage response pathway through protein-protein interactions (PPIs) mediated by its 70N domain. The identification and use of chemical probes that can specifically disrupt these interactions is important for validating RPA as a cancer target. A high-throughput screen (HTS) to identify new chemical entities was conducted, and 90 hit compounds were identified.
View Article and Find Full Text PDFMyeloid cell leukemia-1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family of proteins that is overexpressed and amplified in many cancers. Overexpression of Mcl-1 allows cancer cells to evade apoptosis and contributes to the resistance of cancer cells to be effectively treated with various chemotherapies. From an NMR-based screen of a large fragment library, several distinct chemical scaffolds that bind to Mcl-1 were discovered.
View Article and Find Full Text PDFAims: Protein-protein interactions are critical for the normal membrane trafficking, localization, and function of voltage-gated ion channels. In human heart, the Shaker-related voltage-gated K(+) channel KCNA5 alpha-subunit forms the major basis of an atrial-specific, ultra-rapid delayed rectifier K(+) current, I(Kur). We sought to identify proteins that interact with KCNA5 in human atrium and investigate their role in the I(Kur) complex.
View Article and Find Full Text PDF