Publications by authors named "Carrie Brooks"

The malaria-causing parasite, Plasmodium falciparum completely remodels its host red blood cell (RBC) through the export of several hundred parasite proteins, including transmembrane proteins, across multiple membranes to the RBC. However, the process by which these exported membrane proteins are extracted from the parasite plasma membrane for export remains unknown. To address this question, we fused the exported membrane protein, skeleton binding protein 1 (SBP1), with TurboID, a rapid, efficient and promiscuous biotin ligase (SBP1TbID).

View Article and Find Full Text PDF

The human malaria parasite, , contains an essential plastid called the apicoplast. Most apicoplast proteins are encoded by the nuclear genome and it is unclear how the plastid proteome is regulated. Here, we study an apicoplast-localized caseinolytic-protease (Clp) system and how it regulates organelle proteostasis.

View Article and Find Full Text PDF
Article Synopsis
  • The endoplasmic reticulum (ER) is important for malaria parasite egress, but specific proteins involved have not been identified until this study.
  • Researchers created mutants for the calcium-binding protein PfERC, finding it vital for parasite growth and egress by preventing the rupture of protective vacuole membranes.
  • PfERC is crucial for the activation of a proteolytic cascade involving SUB1 and plasmepsin X, which are necessary for the parasites to exit host cells after division.
View Article and Find Full Text PDF

Cryptosporidium parvum can be reliably genetically manipulated using CRISPR/Cas9-driven homologous repair coupled to in vivo propagation within immunodeficient mice. Recent modifications have simplified the initial protocol significantly. This chapter will guide through procedures for excystation, transfection, infection, collection, and purification of transgenic Cryptosporidium parvum.

View Article and Find Full Text PDF

Cryptosporidium is a leading cause of diarrheal disease and an important contributor to early childhood mortality, malnutrition, and growth faltering. Older children in high endemicity regions appear resistant to infection, while previously unexposed adults remain susceptible. Experimental studies in humans and animals support the development of disease resistance, but we do not understand the mechanisms that underlie protective immunity to Cryptosporidium.

View Article and Find Full Text PDF
Article Synopsis
  • Malaria and cryptosporidiosis, both caused by apicomplexan parasites, are significant contributors to child mortality, highlighting the urgent need for new drugs.
  • The natural product cladosporin shows effectiveness against different stages of these diseases and targets lysyl-tRNA synthetase (KRS1).
  • Researchers have identified and optimized a series of selective KRS inhibitors, demonstrating their potential in mouse models for both malaria and cryptosporidiosis, marking KRSs as promising drug development targets.
View Article and Find Full Text PDF

The apicomplexan parasite Cryptosporidium is a leading cause of diarrheal disease and an important contributor to overall global child mortality. We currently lack effective treatment and immune prophylaxis. Recent advances now permit genetic modification of this important pathogen.

View Article and Find Full Text PDF

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals.

View Article and Find Full Text PDF

Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C.

View Article and Find Full Text PDF

Apicomplexa are unicellular parasites causing important human and animal diseases, including malaria and toxoplasmosis. Most of these pathogens possess a relict but essential plastid, the apicoplast. The apicoplast was acquired by secondary endosymbiosis between a red alga and a flagellated eukaryotic protist.

View Article and Find Full Text PDF

Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality.

View Article and Find Full Text PDF

Unlabelled: Apicomplexa are obligate intracellular parasites that cause important diseases in humans and animals. Manipulating the pathogen genome is the most direct way to understand the functions of specific genes in parasite development and pathogenesis. In Toxoplasma gondii, nonhomologous recombination is typically highly favored over homologous recombination, a process required for precise gene targeting.

View Article and Find Full Text PDF

Malaria remains a significant infectious disease that causes millions of clinical cases and >800,000 deaths per year. The Malaria Box is a collection of 400 commercially available chemical entities that have antimalarial activity. The collection contains 200 drug-like compounds, based on their oral absorption and the presence of known toxicophores, and 200 probe-like compounds, which are intended to represent a broad structural diversity.

View Article and Find Full Text PDF

Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment.

View Article and Find Full Text PDF

Most plastids proteins are post-translationally imported into organelles through multisubunit translocons. The TIC and TOC complexes perform this role in the two membranes of the plant chloroplast and in the inner two membranes of the apicoplasts of the apicomplexan parasites, Toxoplasma gondii and Plasmodium falciparum. Tic22 is a ubiquitous intermembrane translocon component that interacts with translocating proteins.

View Article and Find Full Text PDF

Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized.

View Article and Find Full Text PDF

Autophagy is a cellular process that is highly conserved among eukaryotes and permits the degradation of cellular material. Autophagy is involved in multiple survival-promoting processes. It not only facilitates the maintenance of cell homeostasis by degrading long-lived proteins and damaged organelles, but it also plays a role in cell differentiation and cell development.

View Article and Find Full Text PDF

Apicomplexa are important pathogens that include the causative agents of malaria, toxoplasmosis, and cryptosporidiosis. Apicomplexan parasites contain a relict chloroplast, the apicoplast. The apicoplast is indispensable and an attractive drug target.

View Article and Find Full Text PDF

Members of the eukaryotic phylum Apicomplexa are the cause of important human diseases including malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular parasites produce new invasive stages through a complex budding process. The budding cycle is remarkably flexible and can produce varied numbers of progeny to adapt to different host-cell niches.

View Article and Find Full Text PDF

The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding.

View Article and Find Full Text PDF

Apicomplexa are unicellular eukaryotic pathogens that carry a vestigial algal endosymbiont, the apicoplast. The physiological function of the apicoplast and its integration into parasite metabolism remain poorly understood and at times controversial. We establish that the Toxoplasma apicoplast membrane-localized phosphate translocator (TgAPT) is an essential metabolic link between the endosymbiont and the parasite cytoplasm.

View Article and Find Full Text PDF

Apicomplexa are obligate intracellular pathogens that have fine-tuned their proliferative strategies to match a large variety of host cells. A critical aspect of this adaptation is a flexible cell cycle that remains poorly understood at the mechanistic level. Here we describe a forward genetic dissection of the apicomplexan cell cycle using the Toxoplasma model.

View Article and Find Full Text PDF
Article Synopsis
  • Chicken blastodermal cells can be cultured briefly and still contribute to various tissues in gamma-irradiated embryos, but creating transgenic birds has been challenging due to low integration rates of transgenes into their genomes.* -
  • This study developed two methods to successfully isolate and culture blastodermal cells with integrated transgenes from specific chicken embryos, using chick embryo extract to promote cell growth.* -
  • Although injected into irradiated embryos resulted in chicks with donor cell tissues and detectable transgene sequences in sperm DNA, breeding these chimeric birds did not lead to successful germline transmission of the transgene.*
View Article and Find Full Text PDF