The role of cell adhesion molecules in mediating interactions with neighboring cells and the extracellular matrix has long been appreciated. More recently, these molecules have been shown to modulate intracellular signal transduction cascades critical for cell growth and proliferation. Expression of adhesion molecule on glia (AMOG) is downregulated in human and mouse gliomas, suggesting that AMOG may be important for growth regulation in the brain.
View Article and Find Full Text PDFThe neurofibromatosis 2 (NF2) tumor suppressor protein, merlin, functions as a negative growth regulator; however, the molecular mechanisms that underlie merlin regulation remain elusive. Recent studies have implicated merlin phosphorylation in regulating merlin subcellular localization and growth suppression. P21-activated kinase (PAK), a downstream target of Rac1/Cdc42, directly phosphorylates merlin at Serine 518.
View Article and Find Full Text PDFOne common genetic change in anaplastic meningiomas is amplification of chromosome 17q23 containing the S6 kinase (S6K) gene. We show, for the first time to our knowledge, increased S6K mRNA expression in anaplastic meningiomas compared with benign tumors. To evaluate S6K as a candidate meningioma progression gene, we generated IOMM-Lee human meningioma cell lines overexpressing S6K.
View Article and Find Full Text PDFThe neurofibromatosis 2 (NF2) tumor suppressor gene product, merlin, belongs to the ezrin-radixin-moesin (ERM) subgroup of the Protein 4.1 family, which links cell surface glycoproteins to the actin cytoskeleton. Previous studies have suggested that phosphorylation of merlin, similar to other ERM proteins, may regulate its function.
View Article and Find Full Text PDF