Prostate cancer is among the most common diseases worldwide. Despite recent progress with treatments, patients with advanced prostate cancer have poor outcomes and there is a high unmet need in this population. Understanding molecular determinants underlying prostate cancer and the aggressive phenotype of disease can help with design of better clinical trials and improve treatments for these patients.
View Article and Find Full Text PDFPurpose: Not all patients with metastatic castration-resistant prostate cancer (mCRPC) have sufficient tumor tissue available for multigene molecular testing. Furthermore, samples may fail because of difficulties within the testing procedure. Optimization of screening techniques may reduce failure rates; however, a need remains for additional testing methods to detect cancers with alterations in homologous recombination repair genes.
View Article and Find Full Text PDFPurpose: Successful implementation of genomic testing in clinical practice is critical for identification of men with metastatic castration-resistant prostate cancer (mCRPC) eligible for olaparib and future molecularly targeted therapies.
Patients And Methods: An investigational clinical trial assay, based on the FoundationOneCDx tissue test, was used to prospectively identify patients with qualifying homologous recombination repair gene alterations in the phase III PROfound study. Evaluation of next-generation sequencing (NGS) tissue test outcome against preanalytic parameters was performed to identify key factors influencing NGS result generation.
Background: We previously reported that olaparib led to significantly longer imaging-based progression-free survival than the physician's choice of enzalutamide or abiraterone among men with metastatic castration-resistant prostate cancer who had qualifying alterations in homologous recombination repair genes and whose disease had progressed during previous treatment with a next-generation hormonal agent. The results of the final analysis of overall survival have not yet been reported.
Methods: In an open-label, phase 3 trial, we randomly assigned patients in a 2:1 ratio to receive olaparib (256 patients) or the physician's choice of enzalutamide or abiraterone plus prednisone as the control therapy (131 patients).
Background: Multiple loss-of-function alterations in genes that are involved in DNA repair, including homologous recombination repair, are associated with response to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibition in patients with prostate and other cancers.
Methods: We conducted a randomized, open-label, phase 3 trial evaluating the PARP inhibitor olaparib in men with metastatic castration-resistant prostate cancer who had disease progression while receiving a new hormonal agent (e.g.
Squamous cell carcinoma-related oncogene (SCCRO, also known as DCUN1D1) is a component of the E3 for neddylation. As such, DCUN1D1 regulates the neddylation of cullin family members. Targeted inactivation of DCUN1D1 in mice results in male-specific infertility.
View Article and Find Full Text PDFMicrosatellites are short tandem repeat sequences that are highly prone to expansion/contraction due to their propensity to form non-B-form DNA structures, which hinder DNA polymerases and provoke template slippage. Although error correction by mismatch repair plays a key role in preventing microsatellite instability (MSI), which is a hallmark of Lynch syndrome, activities must also exist that unwind secondary structures to facilitate replication fidelity. Here, we report that Fancj helicase-deficient mice, while phenotypically resembling Fanconi anemia (FA), are also hypersensitive to replication inhibitors and predisposed to lymphoma.
View Article and Find Full Text PDFRepair of interstrand crosslinks (ICLs) requires the coordinated action of the intra-S-phase checkpoint and the Fanconi anaemia pathway, which promote ICL incision, translesion synthesis and homologous recombination (reviewed in refs 1, 2). Previous studies have implicated the 3'-5' superfamily 2 helicase HELQ in ICL repair in Drosophila melanogaster (MUS301 (ref. 3)) and Caenorhabditis elegans (HELQ-1 (ref.
View Article and Find Full Text PDFTEL2 interacts with and is essential for the stability of all phosphatidylinositol 3-kinase-related kinases (PIKKs), but its mechanism of action remains unclear. Here, we show that TEL2 is constitutively phosphorylated on conserved serines 487 and 491 by casein kinase 2 (CK2). Proteomic analyses establish that the CK2 phosphosite of TEL2 confers binding to the R2TP/prefoldin-like complex, which possesses chaperon/prefoldin activities required during protein complex assembly.
View Article and Find Full Text PDFFanconi anemia (FA) is a complex cancer susceptibility disorder associated with DNA repair defects and infertility, yet the precise function of the FA proteins in genome maintenance remains unclear. Here we report that C. elegans FANCD2 (fcd-2) is dispensable for normal meiotic recombination but is required in crossover defective mutants to prevent illegitimate repair of meiotic breaks by nonhomologous end joining (NHEJ).
View Article and Find Full Text PDFDNA double strand breaks and blocked or collapsed DNA replication forks are potentially genotoxic lesions that can result in deletions, aneuploidy or cell death. Homologous recombination (HR) is an essential process employed during repair of these forms of damage. HR allows for accurate restoration of the damaged DNA through use of a homologous template for repair.
View Article and Find Full Text PDFGenomic integrity is maintained via the concerted action of proteins that coordinate and control DNA replication and those that respond to DNA damage. The Mre11 complex is a mediator of the DNA damage response through its functions in DNA double strand break (DSB) sensing, checkpoint activation and recombinational DNA repair. The complex responds to mitotic and meiotic DSBs, and is also activated in cells experiencing DNA replication stress.
View Article and Find Full Text PDFDeficiency in both ATM and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is synthetically lethal in developing mouse embryos. Using mice that phenocopy diverse aspects of Atm deficiency, we have analyzed the genetic requirements for embryonic lethality in the absence of functional DNA-PKcs. Similar to the loss of ATM, hypomorphic mutations of Mre11 (Mre11(ATLD1)) led to synthetic lethality when juxtaposed with DNA-PKcs deficiency (Prkdc(scid)).
View Article and Find Full Text PDFThe majority of spontaneous chromosome breakage occurs during the process of DNA replication. Homologous recombination is the primary mechanism of repair of such damage, which probably accounts for the fact that it is essential for genome integrity and viability in mammalian cells. The Mre11 complex plays diverse roles in the maintenance of genomic integrity, influencing homologous recombination, checkpoint activation, and telomere maintenance.
View Article and Find Full Text PDFWe have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs). This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast.
View Article and Find Full Text PDFThe Mre11 complex (consisting of MRE11, RAD50, and NBS1/Xrs2) is required for double-strand break (DSB) formation, processing, and checkpoint signaling during meiotic cell division in S. cerevisiae. Whereas studies of Mre11 complex mutants in S.
View Article and Find Full Text PDFThe advent of gene targeting has allowed the dissection of many essential cellular pathways, including those involved in cell cycle regulation, signal transduction, and development. However, it is becoming increasingly clear that the simple gene deletion strategy may not be sufficient for the modeling of many cancer syndromes. In this Prospect article, we will discuss the strengths and weaknesses of mouse models, how they have advanced from gene deletions to truncations, point mutations, and conditional mouse models in which expression or loss of the gene of interest is controlled either temporally or spatially.
View Article and Find Full Text PDFErythroid cell-specific gene regulation during terminal differentiation is controlled by transcriptional regulators, such as EKLF and GATA1, that themselves exhibit tissue-restricted expression patterns. Their early expression, already in evidence within multipotential hematopoietic cell lines, has made it difficult to determine what extracellular effectors and transduction mechanisms might be directing the onset of their own transcription during embryogenesis. To circumvent this problem, we have taken the novel approach of investigating whether the ability of embryonic stem (ES) cells to mimic early developmental patterns of cellular expression during embryoid body (EB) differentiation can address this issue.
View Article and Find Full Text PDF