ACS Appl Mater Interfaces
October 2022
In organic solar cells (OSCs), a thick active layer usually yields a higher photocurrent with broader optical absorption than a thin active layer. In fact, a ∼300 nm thick active layer is more compatible with large-area processing methods and theoretically should be a better spot for efficiency optimization. However, the bottleneck of developing high-efficiency thick-film OSCs is the loss in fill factor (FF).
View Article and Find Full Text PDFThe light soaking effect (LSE) is widely known in perovskite solar cells (PVSCs), but its origin is still elusive. In this study, we show that in common with hysteresis, the LSE is owed to the ion migration in PVSCs. Driven by the photovoltage, the mobile ions in the perovskite materials (MA/I) migrate to the selective contacts, forming a boosted P-i-N junction resulting in enhanced charge separation.
View Article and Find Full Text PDFRegio-random (P1) and -regular (P2) difluorobenzene-naphthalene-containing polymer acceptors were developed for bulk-heterojunction all-polymer solar cells (all-PSCs). P2 exhibited significantly higher crystallinity in thin films, providing high spectral absorptivity and electron mobility than P1. When used in all-PSC devices, P2 afforded a respectably higher power conversion efficiency of over 5%.
View Article and Find Full Text PDF