There is increasing interest to employ in vitro transcriptomics experiments in toxicological testing, for example to determine a point-of-departure (PoD) for chemical safety assessment. However current practices to derive PoD tend to utilise a single exposure time despite the importance of exposure time on the manifestation of toxicity caused by a chemical. Therefore it is important to investigate both concentration and exposure time to determine how these factors affect biological responses, and as a consequence, the derivation of PoDs.
View Article and Find Full Text PDFAmongst omics technologies, metabolomics should have particular value in regulatory toxicology as the measurement of the molecular phenotype is the closest to traditional apical endpoints, whilst offering mechanistic insights into the biological perturbations. Despite this, the application of untargeted metabolomics for point-of-departure (POD) derivation via benchmark concentration (BMC) modelling is still a relatively unexplored area. In this study, a high-throughput workflow was applied to derive PODs associated with a chemical exposure by measuring the intracellular metabolome of the HepaRG cell line following treatment with one of four chemicals (aflatoxin B, benzo[a]pyrene, cyclosporin A, or rotenone), each at seven concentrations (aflatoxin B, benzo[a]pyrene, cyclosporin A: from 0.
View Article and Find Full Text PDFHuman induced pluripotent stem cell (iPSC)-derived neuronal and glial cell models are suitable to assess the effects of environmental chemicals on the developing brain. Such test systems can recapitulate several key neurodevelopmental features, such as neural stem cell formation and differentiation towards different neuronal subtypes and astrocytes, neurite outgrowth, synapse formation and neuronal network formation and function, which are crucial for brain development. While monolayer, two-dimensional (2D) cultures of human iPSC-neuronal or glial derivatives are generally suited for high-throughput testing, they also show some limitations.
View Article and Find Full Text PDFBackground: A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD).
Objective: Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression.
Methods: Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted.
Regulatory bodies have started to recognise the value of in vitro screening and metabolomics as two types of new approach methodologies (NAMs) for chemical risk assessments, yet few high-throughput in vitro toxicometabolomics studies have been reported. A significant challenge is to implement automated sample preparation of the low biomass samples typically used for in vitro screening. Building on previous work, we have developed, characterised and demonstrated an automated sample preparation and analysis workflow for in vitro metabolomics of HepaRG cells in 96-well microplates using a Biomek i7 Hybrid Workstation (Beckman Coulter) and Orbitrap Elite (Thermo Scientific) high-resolution nanoelectrospray direct infusion mass spectrometry (nESI-DIMS), across polar metabolites and lipids.
View Article and Find Full Text PDFPrenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days.
View Article and Find Full Text PDFHalogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life.
View Article and Find Full Text PDFBackground: In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation.
View Article and Find Full Text PDFBackground And Aims: Primary biliary cholangitis is an autoimmune biliary disease characterized by injury of bile ducts, eventually leading to cirrhosis and death. In most cases, anti-mitochondrial antibodies and persistently elevated serum alkaline phosphatase are the basis for the serological diagnosis. Anti-nuclear antibodies are also useful and may indicate a more aggressive diseases course.
View Article and Find Full Text PDFUpon T cell receptor stimulation, CD4 T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4 T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells.
View Article and Find Full Text PDFUpon activation, lymphocytes release vesicles containing microRNAs (miRNAs). However, little is known as to whether this release results in modulation of circulating miRNAs (the miRNome) in the serum. The present work aims to identify lymphocyte subset-specific signatures of miRNAs within the serum circulating miRNome.
View Article and Find Full Text PDFThe miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations.
View Article and Find Full Text PDFAlthough gold nanoparticles (AuNPs) are currently used in several industrial products and biomedical applications, information about their biological effects is very limited. Thus, it is becoming crucial to assess their safety and adequately investigate the complexity of cell-nanoparticles interactions. In this work, the Balb/3T3 mouse fibroblast cell line was selected as an in vitro model to study the effects of AuNPs.
View Article and Find Full Text PDFHigh content omic techniques in combination with stable human in vitro cell culture systems have the potential to improve on current pre-clinical safety regimes by providing detailed mechanistic information of altered cellular processes. Here we investigated the added benefit of integrating transcriptomics, proteomics and metabolomics together with pharmacokinetics for drug testing regimes. Cultured human renal epithelial cells (RPTEC/TERT1) were exposed to the nephrotoxin Cyclosporine A (CsA) at therapeutic and supratherapeutic concentrations for 14days.
View Article and Find Full Text PDFBackground: Asthma is a heterogeneous disease and its different phenotypes need to be better characterized from a biochemical-inflammatory standpoint. This study aimed to apply the metabolomic approach to exhaled breath condensate (breathomics) to discriminate different asthma phenotypes, with a particular focus on severe asthma in children.
Methods: In this cross-sectional study, we recruited 42 asthmatic children (age, 8-17 years): 31 with nonsevere asthma (treated with inhaled steroids or not) and 11 with severe asthma.
Background: Platelets are specialized cells, produced by megakaryocytes (MKs) in the bone marrow, which represent the first defense against hemorrhage. There are many diseases where platelet production or function is impaired, with severe consequences for patients. Therefore, new insights into the process of MK differentiation and platelet formation would have a major impact on both basic and clinical research.
View Article and Find Full Text PDFThe frequency of early-onset neonatal sepsis without prophylaxis is 1-5/1.000 live births. Since year '70 the most frequent causative microorganism is the group B Streptococcus (S.
View Article and Find Full Text PDF2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an endocrine-disrupting environmental pollutant which affects bone tissue, although the mechanistic basis of this action is far from clear. We adopted a proteome approach to investigate the disturbance of osteogenesis evoked by TCDD in an in vitro osteoblast differentiation model of rat mesenchymal stem cells. Eighteen individual proteins showed a significant change in abundance as results of ten days of TCDD exposure, at which time mRNA changes in osteoblast differentiation markers were also observed.
View Article and Find Full Text PDFBackground: The aromatic amine 4-aminobiphenyl (4-ABP) is an environmental and occupational contaminant known to be a major etiological agent of human bladder cancer. 4-ABP metabolites are able to form DNA adducts that may induce mutations and initiate bladder carcinogenesis. Cells exposed to 4-ABP may develop resistance to the carcinogen.
View Article and Find Full Text PDFOne characteristic feature of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity is dramatic interspecies and interstrain variability in sensitivity. This complicates dioxin risk assessment for humans. However, this variability also provides a means of characterizing mechanisms of dioxin toxicity.
View Article and Find Full Text PDFEstrogen deficiency results in a reduced bone mass, which can be prevented by treatment with estrogens. This study used a proteomic approach for the first time to obtain a global perspective of estrogens' effects on whole-bone proteins. Bone proteome profiles were examined in three groups of mice: (1) sham-operated with normal ovarian functions, (2) ovariectomised and (3) ovariectomised with estrogen replacement therapy.
View Article and Find Full Text PDFTwo hundred and twenty one Streptococcus pyogenes isolates collected from throat swabs of untreated children with uncomplicated pharyngotonsillitis living in two centres situated in the north of Italy were tested to evaluate their macrolide resistance phenotype. Isolates were also typed for T protein and assayed for opacity factor (OF) and protease production. Resistance to macrolides was found to be similar in the two centres.
View Article and Find Full Text PDFThe medial septal region and the hippocampus are connected reciprocally via GABAergic neurons, but the physiological role of this loop is still not well understood. In an attempt to reveal the physiological effects of the hippocamposeptal GABAergic projection, we cross-correlated hippocampal sharp wave (SPW) ripples or theta activity and extracellular units recorded in the medial septum and diagonal band of Broca (MSDB) in freely moving rats. The majority of single MSDB cells (60%) were significantly suppressed during SPWs.
View Article and Find Full Text PDF