Potocki-Shaffer syndrome (PSS) is a contiguous gene disorder due to the interstitial deletion of band p11.2 of chromosome 11 and is characterized by multiple exostoses, parietal foramina, intellectual disability (ID), and craniofacial anomalies (CFAs). Despite the identification of individual genes responsible for multiple exostoses and parietal foramina in PSS, the identity of the gene(s) associated with the ID and CFA phenotypes has remained elusive.
View Article and Find Full Text PDFPotocki-Shaffer syndrome is a rare contiguous gene deletion syndrome due to haploinsufficiency of the 11p11.2p12 region and is characterized by craniofacial abnormalities, developmental delay, intellectual disability, multiple exostoses, and biparietal foramina. In this study, six patients with the Potocki-Shaffer syndrome were identified and evaluated using a multidisciplinary protocol that included assessments by a geneticist, ophthalmologist, otolaryngologist, orthopedist, nephrologist, audiologist, and neuropsychologist.
View Article and Find Full Text PDFThe mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate.
View Article and Find Full Text PDFDeletion of chromosome 1p36 is the most commonly observed terminal deletion in humans with a frequency of 1 in 5,000 in the general population. In contrast, 22q13 duplications are rare and only a few cases have been reported. Unbalanced translocations resulting in monosomy 1p36 and a trisomy of 22q13.
View Article and Find Full Text PDFApproximately one in 500 individuals carries a reciprocal translocation. Balanced translocations are usually associated with a normal phenotype unless the translocation breakpoints disrupt a gene(s) or cause a position effect. We investigated breakpoint junctions at the sequence level in phenotypically normal balanced translocation carriers.
View Article and Find Full Text PDFWe demonstrate that satellite III (SatIII) DNA subfamilies cloned from human acrocentric chromosomes arose in the Hominoidea superfamily. Two groups, distinguished by sequence composition, evolved nonconcurrently, with group 2 evolving 16-23 million years ago (MYA) and the more recent group 1 sequences emerging approximately 4.5 MYA.
View Article and Find Full Text PDFApproximately one in 500 individuals carries a reciprocal translocation. Of the 121 monosomy 1p36 subjects ascertained by our laboratory, three independent cases involved unbalanced translocations of 1p and 9q, all of which were designated t(1;9)(p36.3;q34).
View Article and Find Full Text PDFAlthough approximately 1 in 500 individuals carries a reciprocal translocation, little is known about the mechanisms that result in their formation. We analyzed the sequences surrounding the breakpoints in three unbalanced translocations of 1p and 9q, all of which were designated t(1;9)(p36.3;q34), to investigate the presence of sequence motifs that might mediate nonhomologous end joining (NHEJ).
View Article and Find Full Text PDFDeletion of the distal band of the short arm of chromosome 1 (monosomy 1p36) is the most common terminal deletion syndrome, occurring in about 1 in 5000 newborns. Of the 121 subjects ascertained for our study to date, 12 (9.9%) have interstitial deletions, three of which are complex rearrangements showing more than one deletion.
View Article and Find Full Text PDFPotocki-Shaffer syndrome (PSS) is a contiguous gene deletion syndrome that results from haploinsufficiency of at least two genes within the short arm of chromosome 11[del(11)(p11.2p12)]. The clinical features of PSS can include developmental delay, mental retardation, multiple exostoses, parietal foramina, enlarged anterior fontanel, minor craniofacial anomalies, ophthalmologic anomalies, and genital abnormalities in males.
View Article and Find Full Text PDFStructural chromosome abnormalities have aided in gene identification for over three decades. Delineation of the deletion sizes and rearrangements allows for phenotype/genotype correlations and ultimately assists in gene identification. In this report, we have delineated the precise rearrangements in four subjects with deletions, duplications, and/or triplications of 1p36 and compared the regions of imbalance to two cases recently published.
View Article and Find Full Text PDF