Publications by authors named "Carolyn Wiltshire"

Castrate-resistant prostate cancer remains a major clinical challenge. Due to the toxicity profile of taxane-based chemotherapy and treatment failure in some patients, novel agents with improved efficacy to side effect profiles are urgently needed. Eg5, a member of the kinesin-5 family, controls the formation of the bipolar spindle during cell division, and suppressed Eg5 function leads to mitotic arrest.

View Article and Find Full Text PDF

1. We have investigated the cardiovascular pharmacology of the crude venom extract (CVE) from the potentially lethal, very small carybdeid jellyfish Carukia barnesi, in rat, guinea-pig and human isolated tissues and anaesthetized piglets. 2.

View Article and Find Full Text PDF

Candida albicans is a major fungal pathogen of humans. It regulates its morphology in response to various environmental signals, but many of these signals are poorly defined. We show that amino acid starvation induces filamentous growth in C.

View Article and Find Full Text PDF

We have identified a novel c-Jun N-terminal kinase (JNK)-interacting protein, Sab, by yeast two-hybrid screening. Sab binds to and serves as a substrate for JNK in vitro, and was previously found to interact with the Src homology 3 (SH3) domain of Bruton's tyrosine kinase (Btk). Inspection of the sequence of Sab reveals the presence of two putative mitogen-activated protein kinase interaction motifs (KIMs) similar to that found in the JNK docking domain of the c-Jun transcription factor, and four potential serine-proline JNK phosphorylation sites in the C-terminal half of the molecule.

View Article and Find Full Text PDF

The regulation of c-Jun transcriptional activity by Jun N-terminal kinase (JNK) has become a paradigm for understanding how mitogen-activated protein (MAP) kinase signalling pathways elicit specific changes in gene transcription through selective phosphorylation of nuclear transcription factors. Selective phosphorylation of c-Jun by JNK is determined by a specific docking motif in c-Jun, the delta region, which enables JNK to associate physically with c-Jun. Analogous MAP kinase docking motifs have subsequently been found in several other transcription factors, indicating that this is a general mechanism for ensuring specificity of signal transduction.

View Article and Find Full Text PDF