The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data.
View Article and Find Full Text PDFN Engl J Med
November 2021
Background: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.
View Article and Find Full Text PDFUnderstanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time-resolved fluorescence anisotropy imaging (TR-FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non-equivalent viscosity-related parameters in complex heterogeneous environments. The parameters, FMR rotational correlation time and lifetime, are extracted from fluorescence anisotropy decays, which in heterogeneous environments show dip-and-rise behavior due to multiple dye populations.
View Article and Find Full Text PDFThe transition dipole moment of organic dyes PM546 and rhodamine 123 is calculated from fluorescence lifetime measurements in solutions of different refractive index. A model proposed by Toptygin et al (2002 J. Phys.
View Article and Find Full Text PDFDNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost.
View Article and Find Full Text PDFThe average fluorescence lifetime of the green fluorescent protein (GFP) in solution is a function of the refractive index of its environment. We report that this is also the case for GFP-tagged proteins in cells. Using time-correlated single-photon counting (TCSPC)-based fluorescence lifetime imaging (FLIM) with a confocal scanning microscope, images of GFP-tagged proteins in cells suspended in different refractive index media are obtained.
View Article and Find Full Text PDFAn understanding of cellular signalling from a systems-based approach has to be robust to assess the effects of point mutations in component proteins. Outcomes of these perturbations should be predictable in terms of downstream response, otherwise a holistic interpretation of biological processes or disease states cannot be obtained. Two single, proximal point mutations (S252W and P253R) in the extracellular region of FGFR2 (fibroblast growth factor receptor 2) prolong growth factor engagement resulting in dramatically different intracellular phenotypes.
View Article and Find Full Text PDFA suitable matrix to host enzymes for biosensor applications should encage and retain the bioactive species, while allowing it to be accessed to exploit its catalytic properties. Sol-gel derived monoliths are promising in this aspect. Molecular diffusion was monitored using fluorescence labelled proteins and unbound fluorescence dye molecules (representative of enzyme substrates) and their interaction with and mobility within the host assessed using time-resolved fluorescence anisotropy and fluorescence recovery after photobleaching observed via confocal microscopy.
View Article and Find Full Text PDFThe study of protein adsorption and any associated conformational changes on interaction with biomaterials is of great importance in the area of implants and tissue constructs. This study aimed to evaluate some fluorescent techniques to probe protein conformation on a selection of biodegradable polymers currently under investigation for biomedical applications. Because of the fluorescence emanating from the polymers, the use of monitoring intrinsic protein fluorescence was precluded.
View Article and Find Full Text PDFTime-resolved fluorescence anisotropy and fluorescence recovery after photobleaching were applied to study the diffusion of dyes and a fluorescence-labeled enzyme in a sol-gel-derived medium. This type of medium exhibits attractive properties such as robustness, low processing temperature, high porosity, large internal surface area, and can act as protective immobilization media for biologically active molecules. This makes it a suitable candidate for biosensor applications.
View Article and Find Full Text PDF