Publications by authors named "Carolyn T Jordan"

Translational animal models for oral mucositis (OM) are necessary to simulate and assess the bioclinical effects and response in humans. These models should simulate high levels of radiation exposure that leads to oxidative stress and inflammatory-initiated tissue changes. Hamster models have been extensively studied to observe pathological effects of radiation exposure and help in the development of effective treatments.

View Article and Find Full Text PDF

Despite the promise of its therapeutic benefits, curcumin as a free molecule has failed to demonstrate significant clinical success. Arguably, its inherently poor stability and rapid clearance is a significant reason for these negative outcomes. The incorporation of curcumin into the backbone of a crosslinked hydrogel that utilizes poly(beta-amino ester) (PBAE) chemistry can provide a tunable protective network with the ability to release at a controlled rate while improving its therapeutic potential.

View Article and Find Full Text PDF

Unlabelled: Recently, biomaterials have been designed to contain redox-sensitive moieties, such as thiols and disulfides, to impart responsive degradation and/or controlled release. However, due to the high sensitivity of cellular redox-based systems which maintain free-radical homeostasis (e.g.

View Article and Find Full Text PDF

Despite production having stopped in the 1970s, polychlorinated biphenyls (PCBs) represent persistent organic pollutants that continue to pose a serious human health risk. Exposure to PCBs has been linked to chronic inflammatory diseases, such as cardiovascular disease, type 2 diabetes, obesity, as well as hepatic disorders, endocrine dysfunction, neurological deficits, and many others. This is further complicated by the PCB's strong hydrophobicity, resulting in their ability to accumulate up the food chain and to be stored in fat deposits.

View Article and Find Full Text PDF

Mitochondria are considered to be the "power plants" of the cell, but can also initiate and execute cell death, stimulated by oxidative stress (OS). OS induced mitochondrial dysfunction is characterized by a loss in oxygen consumption and reduced ATP production. Curcumin, as a potential therapeutic, has been explored as a candidate for mitochondrial OS suppression, but rapid metabolism and aqueous insolubility has prevented it from being effective.

View Article and Find Full Text PDF