Publications by authors named "Carolyn Selenski"

A BioFocus DPI SoftFocus library of ∼35 000 compounds was screened against Mycobacterium tuberculosis (Mtb) in order to identify novel hits with antitubercular activity. The hits were evaluated in biology triage assays to exclude compounds suggested to function via frequently encountered promiscuous mechanisms of action including inhibition of the QcrB subunit of the cytochrome bc complex, disruption of cell-wall homeostasis, and DNA damage. Among the hits that passed this screening cascade, a 6-dialkylaminopyrimidine carboxamide series was prioritized for hit to lead optimization.

View Article and Find Full Text PDF

Since the appearance of resistance to the current front-line antimalarial treatments, ACTs (artemisinin combination therapies), the discovery of novel chemical entities to treat the disease is recognized as a major global health priority. From the GSK antimalarial set, we identified an aminoxadiazole with an antiparasitic profile comparable with artemisinin (1), with no cross-resistance in a resistant strains panel and a potential new mode of action. A medicinal chemistry program allowed delivery of compounds such as 19 with high solubility in aqueous media, an acceptable toxicological profile, and oral efficacy.

View Article and Find Full Text PDF

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH).

View Article and Find Full Text PDF

Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography.

View Article and Find Full Text PDF

Bromodomains are acetyl-lysine specific protein interaction domains that have recently emerged as a new target class for the development of inhibitors that modulate gene transcription. The two closely related bromodomain containing proteins BAZ2A and BAZ2B constitute the central scaffolding protein of the nucleolar remodeling complex (NoRC) that regulates the expression of noncoding RNAs. However, BAZ2 bromodomains have low predicted druggability and so far no selective inhibitors have been published.

View Article and Find Full Text PDF

We report the synthesis of diinsininone (33), the aglycone of (±)-diinsinin (2). Thereby, we complete the first construction of a proanthocyanidin (PA) type-A compound incorporating a [3.3.

View Article and Find Full Text PDF

The first example of an enantioselective cycloaddition of an o-quinone methide (o-QM) with a chiral enol ether is described along with the total synthesis of (+)-mimosifoliol and the formal synthesis of (+)-tolterodine. These syntheses exemplify a three-component, one-pot benzopyran approach for the construction of chiral benzylic junctions. Cycloadditions of various enol ethers and o-QMs are examined, and diastereoselectivities >95% are obtained with trans-2-phenyl-1-cyclohexanol and 2,2-diphenylcyclopentanol vinyl ethers.

View Article and Find Full Text PDF

The Diels-Alder reactions of o-quinone methides generated from OBOC-salicylic aldehydes and alcohols are described, allowing for the synthesis of various substituted benzopyrans. The low temperatures employed for this procedure enable high diastereoselectivity in reactions with beta-substituted o-quinone methides.

View Article and Find Full Text PDF