Publications by authors named "Carolyn M Sherff"

The defensive withdrawal reflexes of Aplysia californica have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the tail-elicited tail withdrawal reflex (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have identified the induction requirements and molecular basis of different temporal phases of synaptic facilitation that underlie sensitization in this system.

View Article and Find Full Text PDF

BDNF, which acts through tropomyosin-related kinase B (TrkB) receptors during mammalian development, also enhances long-term synaptic facilitation (LTF) in adult Aplysia. Because LTF is a substrate for long-term memory (LTM) in Aplysia, we examined the requirement of a secreted TrkB ligand in LTM formation at molecular, synaptic, and behavioral levels. Using an extracellular fusion protein that sequesters secreted TrkB ligands, we show that TrkB function is required for serotonin-induced activation of extracellular signal-regulated kinase, tail nerve shock-induced LTF in the CNS, and tail shock-induced LTM but is not necessary for short-term synaptic facilitation or short-term memory.

View Article and Find Full Text PDF

The induction of different phases of memory depends on the amount and patterning of training, raising the question of whether specific training patterns engage different cellular mechanisms and whether these mechanisms operate in series or in parallel. We examined these questions by using a cellular model of memory formation: facilitation of the tail sensory neuron-motor neuron synapses by serotonin (5-hydroxytryptamine, 5-HT) in the CNS of Aplysia. We studied facilitation in two temporal domains: intermediate-term facilitation (1.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway has been implicated recently in synaptic plasticity and memory. Here we used tail shock-induced sensitization of the tail-elicited siphon withdrawal reflex in Aplysia to examine the role of MAPK in three different phases of memory. We show that a specific pattern of serotonin (5-HT) application that produces intermediate-term and long-term synaptic facilitation (ITF and LTF, respectively) of the sensory-motor (SN-MN) synapses in Aplysia leads to sustained activation of extracellular signal-regulated kinase in the ventrocaudal cluster sensory neurons (SNs), which include the tail SNs.

View Article and Find Full Text PDF

Induction of long-term synaptic changes at one synapse can facilitate the induction of long-term plasticity at another synapse. Here we show that if Aplysia sensory neuron (SN) somata and their remote motor neuron (MN) synapses are simultaneously exposed to serotonin (5HT) pulses, which at either site alone are insufficient to induce long-term facilitation (LTF), processes activated at these sites interact to induce LTF. Coincident induction of LTF requires: (1) that the synaptic pulse occurs within a brief temporal window of the somatic pulse and (2) that local protein synthesis occurs immediately at the synapse, followed by delayed protein synthesis at the soma.

View Article and Find Full Text PDF

Long-term facilitation (LTF) of Aplysia tail sensory neuron-motor neuron (SN-MN) synapses provides a synaptic correlate of memory for long-term behavioral sensitization of the tail-siphon withdrawal reflex. LTF can be induced by repeated exposures of serotonin (5HT) in the isolated pleural-pedal ganglion preparation. In addition, we have shown previously (Sherff and Carew, 1999) that LTF can also be induced by coincident 5HT exposure comprised of a single 25-min exposure of 5HT at the SN cell body and a 5 min pulse of 5HT at the SN-MN synapses.

View Article and Find Full Text PDF