Publications by authors named "Carolyn M Komar"

Proteins carry out cellular functions. Identifying proteins within tissues, which are characteristically comprised of various cell types, is critical to understanding how the tissue functions. Being able to assess protein expression in tissues is also essential to gaining insight into how tissues change under different physiological conditions, in pathological states, in response to treatments, etc.

View Article and Find Full Text PDF

PPARgamma is highly expressed in granulosa cells by 23 days post-partum (pp) and is down-regulated in response to the LH surge. We tested the hypothesis that high levels of FSH during the neonatal period trigger the expression of PPARgamma. To determine when PPARgamma expression is initiated, ovaries were collected from neonatal rats.

View Article and Find Full Text PDF

Glossophaga soricina is a spontaneously ovulating, monovular, polyestrous bat with a simplex uterus, exhibiting true menstruation. Studies conducted on reproductively active, captive-maintained animals established that G. soricina also has polarized ovaries, with the ovarian surface epithelium (OSE) restricted to the medial side of the ovary, and primordial follicles limited to an immediately adjacent zone.

View Article and Find Full Text PDF

We have shown previously that mRNA for peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in granulosa cells and downregulated by the luteinizing hormone (LH) surge. The current studies were undertaken to test the hypothesis that LH stimulates a decrease in the expression of PPARgamma, as well as its activity, in granulosa cells. Ovaries were collected from immature rats 0 and 48 h after they received pregnant mares' serum gonadotropin (PMSG), and 4 and 24 h after administration of human chorionic gonadotropin (hCG), and used for protein isolation or processed for immunolocalization of PPARgamma.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors involved in varied and diverse processes such as steroidogenesis, angiogenesis, tissue remodeling, cell cycle, apoptosis, and lipid metabolism. These processes are critical for normal ovarian function, and all three PPAR family members--alpha, delta, and gamma, are expressed in the ovary. Most notably, the expression of PPARgamma is limited primarily to granulosa cells in developing follicles, and is regulated by luteinizing hormone (LH).

View Article and Find Full Text PDF

Extensive remodeling of the extracellular matrix occurs in the ovary during the periovulatory period. Matrix metalloproteinases and their endogenous inhibitors, tissue inhibitors of metalloproteinases, are believed to play integral roles in this highly regulated series of cellular events, but their specific roles remain unclear. Recent cloning studies have identified a novel family of metalloproteinases, the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family.

View Article and Find Full Text PDF

Messenger RNA for peroxisome proliferator-activated receptor gamma (PPARgamma) has been found in granulosa cells, and its expression decreases after the LH surge. We determined which developmental stage of ovarian follicle expresses mRNA for PPARgamma and evaluated the impact of PPARgamma agonists on steroidogenesis. Ovaries were collected from immature eCG/hCG-treated rats at 0 (no eCG), 24, and 48 h post-eCG and 4 and 24 h post-hCG.

View Article and Find Full Text PDF

The tissue inhibitors of metalloproteinases (TIMPs) are important regulators of the matrix metalloproteinases (MMPs), proteolytic enzymes essential for controlling the coordinated tissue remodeling that takes place in the ovary. In the present study, we characterized the ovarian expression pattern of TIMP-4. The localization of TIMP-4 mRNA was determined by in situ hybridization in adult cycling rats.

View Article and Find Full Text PDF

Structural and functional development of the corpus luteum (CL) involves tissue remodeling, angiogenesis, lipid metabolism, and steroid production. The peroxisome proliferator-activated receptors (PPARs) have been shown to play a role in these as well as in a multitude of other cellular processes. To examine the expression of mRNA corresponding to the PPAR family members (alpha, delta, and gamma) in luteal tissue, ovaries were collected from gonadotropin-treated, immature rats on Days 1, 4, 8, and 14 of pseudopregnancy and from adult, cycling animals on each day of the estrous cycle.

View Article and Find Full Text PDF