Publications by authors named "Carolyn Loveridge"

Objectives: To test for evidence of statin-mediated effects in patients with castration-resistant prostate cancer (CRPC) as post-diagnosis use of statins in patients with prostate cancer is associated with favourable survival outcome.

Patients And Methods: The SPECTRE trial was a 6-weeks-long proof-of-concept single-arm Phase II treatment trial, combining atorvastatin and androgen deprivation therapy in patients with CRPC (regardless of metastatic status), designed to test for evidence of statin-mediated effects in patients with CRPC. The primary study endpoint was the proportion of patients achieving a ≥50% drop from baseline in prostate-specific antigen (PSA) levels at any time over the 6-week period of atorvastatin medication (PSA response).

View Article and Find Full Text PDF

Objective: To evaluate the application of RNAscope in the clinical diagnostic field compared to the current 'gold standard' methods employed for testing gene expression levels, including immunohistochemistry (IHC), quantitative real time PCR (qPCR), and quantitative reverse transcriptase PCR (qRT-PCR), and to detect genes, including DNA in situ hybridisation (DNA ISH).

Methods: This systematic review searched CINAHL, Medline, Embase and Web of Science databases for studies that were conducted after 2012 and that compared RNAscope with one or more of the 'gold standard' techniques in human samples. QUADAS-2 test was used for the evaluation of the articles' risk of bias.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment has been published related to the original paper.
  • The amendment can be accessed through a link provided at the top of the paper.
  • Readers are encouraged to check the link for updated information.
View Article and Find Full Text PDF

BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest.

View Article and Find Full Text PDF

Inhibition of the androgen receptor (AR) is the main strategy to treat advanced prostate cancers. AR-independent treatment-resistant prostate cancer is a major unresolved clinical problem. Patients with prostate cancer with alterations in canonical WNT pathway genes, which lead to β-catenin activation, are refractory to AR-targeted therapies.

View Article and Find Full Text PDF

Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of treatment-resistant prostate cancer and poses significant therapeutic challenges. Deregulated receptor tyrosine kinase (RTK) signalling mediated by loss of tumour suppressor Sprouty2 (SPRY2) is associated with treatment resistance. Using pre-clinical human and murine mCRPC models, we show that SPRY2 deficiency leads to an androgen self-sufficient form of CRPC Mechanistically, HER2-IL6 signalling axis enhances the expression of androgen biosynthetic enzyme HSD3B1 and increases SRB1-mediated cholesterol uptake in SPRY2-deficient tumours.

View Article and Find Full Text PDF

Extracellular signal-regulated protein kinase 5 (ERK5) has been implicated during development and carcinogenesis. Nkx3.1-mediated Cre expression is a useful strategy to genetically manipulate the mouse prostate.

View Article and Find Full Text PDF

Prostate cancer does not appear to respond to immune checkpoint therapies where T-cell infiltration may be a key limiting factor. Here, we report evidence that ablating the growth regulatory kinase can increase T-cell infiltration in an established -deficient mouse model of human prostate cancer. Mice that were doubly mutant in prostate tissue for and (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared with control -mutant mice, the latter of which exhibited increased mRNA expression.

View Article and Find Full Text PDF

Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)].

View Article and Find Full Text PDF

Nucleolar sequestration of the RelA subunit of nuclear factor (NF)-κB is an important mechanism for regulating NF-κB transcriptional activity. Ubiquitylation, facilitated by COMMD1 (also known as MURR1), acts as a crucial nucleolar-targeting signal for RelA, but how this ubiquitylation is regulated, and how it differs from cytokine-mediated ubiquitylation, which causes proteasomal degradation of RelA, is poorly understood. Here, we report a new role for p300 (also known as EP300) in controlling stimulus-specific ubiquitylation of RelA, through modulation of COMMD1.

View Article and Find Full Text PDF

Long-term aspirin or related non-steroidal anti-inflammatory drugs (NSAIDs) ingestion can protect against colorectal cancer (CRC). NSAIDs have a pro-apoptotic activity and we have shown that stimulation of the nuclear factor-kappaB (NF-κB) pathway is a key component of this pro-apoptotic effect. However, the upstream pathways have yet to be fully elucidated.

View Article and Find Full Text PDF

Sphingosine kinase 1 (SK1) is an enzyme that catalyzes the phosphorylation of sphingosine to produce the bioactive lipid sphingosine 1-phosphate (S1P). We demonstrate here that the SK1 inhibitor, SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) induces the proteasomal degradation of SK1 in human pulmonary artery smooth muscle cells, androgen-sensitive LNCaP prostate cancer cells, MCF-7 and MCF-7 HER2 breast cancer cells and that this is likely mediated by ceramide as a consequence of catalytic inhibition of SK1 by SKi. Moreover, SK1 is polyubiquitinated under basal conditions, and SKi appears to increase the degradation of SK1 by activating the proteasome.

View Article and Find Full Text PDF

Sphingosine kinase 1 (SK1) is an enzyme that catalyses the phosphorylation of sphingosine to produce the bioactive lipid sphingosine 1-phosphate (S1P). We demonstrate here that FTY720 (Fingolimod) and (S)-FTY720 vinylphosphonate are novel inhibitors of SK1 catalytic activity and induce the proteasomal degradation of this enzyme in human pulmonary artery smooth muscle cells, MCF-7 breast cancer cells and androgen-independent LNCaP-AI prostate cancer cells. Proteasomal degradation of SK1 in response to FTY720 and (S)-FTY720 vinylphosphonate is associated with the down-regulation of the androgen receptor in LNCaP-AI cells.

View Article and Find Full Text PDF

Stimulation of the NF-kappaB pathway can have proapoptotic or antiapoptotic consequences, and one mechanism that determines the outcome is the nuclear distribution of RelA. Certain stress stimuli induce nucleolar accumulation of RelA thereby mediating apoptosis, whereas others induce nucleoplasmic accumulation and inhibition of apoptosis. Here we investigated the mechanisms that regulate the nuclear distribution of RelA, specifically, the role of the ubiquitin/proteasome system.

View Article and Find Full Text PDF

DAZL proteins are germ-cell-specific RNA-binding proteins essential for gametogenesis. The precise molecular role of these proteins in germ-cell development remains enigmatic; however, they appear to function in the cytoplasm. In order to directly address the function of vertebrate DAZL proteins, we have used Xenopus laevis oocytes as a model system.

View Article and Find Full Text PDF