Publications by authors named "Carolyn Garnham"

Background: One factor which influences the speech intelligibility of cochlear implant (CI) users is the number and the extent of the functionality of spiral ganglion neurons (SGNs), referred to as "cochlear health." To explain the interindividual variability in speech perception of CI users, a clinically applicable estimate of cochlear health could be insightful. The change in the slope of the electrically evoked compound action potentials (eCAP), amplitude growth function (AGF) as a response to increased interphase gap (IPG) (IPGE) has been introduced as a potential measure of cochlear health.

View Article and Find Full Text PDF

The vestibular system is responsible for our sense of balance and spatial orientation. Recent studies have shown the possibility of partially restoring the function of this system using vestibular implants. Electrical modeling is a valuable tool in assisting the development of these implants by analyzing stimulation effects.

View Article and Find Full Text PDF

Background: Electrode insertion trauma (EIT) during cochlear implantation (CI) can cause loss of residual hearing. L-N-acetylcysteine (L-NAC) and dexamethasone (Dex) have been individually shown to provide otoprotection albeit at higher concentrations that may be associated with adverse effects. Objective/Aims: The aim of this study is to determine whether L-NAC and Dex could be combined to decrease their effective dosage.

View Article and Find Full Text PDF

Cochlear implantation (CI) is now widely used to provide auditory rehabilitation to individuals having severe to profound sensorineural hearing loss (SNHL). However, CI can lead to electrode insertion trauma (EIT) that can cause damage to sensory cells in the inner ear resulting in loss of residual hearing. Even with soft surgical techniques where there is minimal macroscopic damage, we can still observe the generation of molecular events that may initiate programmed cell death various mechanisms such as oxidative stress, the release of pro-inflammatory cytokines, and activation of the caspase pathway.

View Article and Find Full Text PDF

The human inner ear, which is segregated by a blood/labyrinth barrier, contains resident macrophages [CD163, ionized calcium-binding adaptor molecule 1 (IBA1)-, and CD68-positive cells] within the connective tissue, neurons, and supporting cells. In the lateral wall of the cochlea, these cells frequently lie close to blood vessels as perivascular macrophages. Macrophages are also shown to be recruited from blood-borne monocytes to damaged and dying hair cells induced by noise, ototoxic drugs, aging, and diphtheria toxin-induced hair cell degeneration.

View Article and Find Full Text PDF

: Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear.

View Article and Find Full Text PDF

We evaluated the effects of dexamethasone base (DXMb) containing electrode arrays in a guinea pig model of cochlear implantation to determine if eluted DXMb could protect the cochlea against electrode insertion trauma (EIT)-induced: 1) loss of hair cells; 2) disruption of neural elements; 3) increases in hearing thresholds; 4) increased electrical impedance and 5) fibrosis. A guinea pig model of EIT-induced hearing and hair cell losses was used to test silicone electrode arrays that contained either 10%, 1%, 0.1%, or 0% levels of micronized DXMb.

View Article and Find Full Text PDF

Objective: Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption.

View Article and Find Full Text PDF

Conclusion: Programmed cell death (PCD) initially starts in the support cells (SCs) after electrode insertion trauma (EIT), followed by PCD in hair cells (HCs). Activation of caspase-3 was observed only in SCs. Protecting both SCs and HCs with selective otoprotective drugs at an early stage post implantation may help to preserve residual hearing.

View Article and Find Full Text PDF

Auditory prostheses can partially restore speech comprehension when hearing fails. Sound coding with current prostheses is based on electrical stimulation of auditory neurons and has limited frequency resolution due to broad current spread within the cochlea. In contrast, optical stimulation can be spatially confined, which may improve frequency resolution.

View Article and Find Full Text PDF

Objectives/hypothesis: To investigate the molecular mechanisms involved in electrode insertion trauma (EIT) and to test the otoprotective effect of locally delivered AM-111.

Study Design: An animal model of cochlear implantation.

Methods: Guinea pigs' hearing thresholds were measured by auditory brainstem response (ABR) before and after cochlear implantation in four groups: EIT; pretreated with hyaluronate gel 30 minutes before EIT (EIT+Gel); pretreated with hyaluronate gel/AM-111 30 minutes before EIT (EIT+AM-111); and unoperated contralateral ears as controls.

View Article and Find Full Text PDF

This review covers the molecular mechanisms involved in hair cell and hearing losses which can result from trauma generated during the process of cochlear implantation and the contributions of both the intrinsic and extrinsic cell death signaling pathways in producing these trauma/inflammation induced losses. Application of soft surgical techniques to conserve hearing and protect auditory sensory cells during the process of cochlear implantation surgery and insertion of the electrode array during the process of cochlear implantation are reviewed and discussed. The role of drug therapy and mode of drug delivery for the conservation of a cochlear implant patient's residual hearing is presented and discussed.

View Article and Find Full Text PDF

Cochlear implantation is a highly successful intervention for the treatment of deafness that depends on electrical stimulation of the inner ear's surviving spiral ganglion neurons. It is thought that some of the variability in hearing outcomes that is seen in patients receiving implants may be a reflection of the number or health of surviving neurons. A variety of studies have demonstrated a relationship between hair cell loss and degeneration of the spiral ganglion.

View Article and Find Full Text PDF

For many years, the fields of inner ear pharmacology and hearing devices have progressed in parallel with limited interaction. Recently, there has been a considerable advancement in our understanding of the inner ear and its pathologies. Cochlear implantation is now being adapted for patients with considerable residual hearing but minimal benefit from hearing aids.

View Article and Find Full Text PDF

Cochlear implantation is an accepted treatment method for adults and children with severe to profound hearing loss. Confidence in technology has led to changes in individuals who can receive a cochlear implant and changes in expected benefit with a cochlear implant. This article describes the research and development activities at MED-EL, which make possible the implementation of new speech-coding strategies as well as the application of acoustic and electric stimulation via a combined speech processor in MED-EL devices.

View Article and Find Full Text PDF

Conclusion: Triamcinolone acetonide crystalline suspension (e.g. Volon A) was not ototoxic to the auditory hair cells present within organ of Corti explants and protected them from an ototoxic molecule, i.

View Article and Find Full Text PDF

Objective: The objective of the investigation described in this paper was the determination of the number of (widely spaced) active electrodes needed for users of a COMBI 40+ cochlear implant to achieve asymptotic performance in the recognition of speech against a background of wideband noise.

Design: This study measured the performance in speech tests of patients using the Med-El implementation of continuous interleaved sampling with widely spaced electrode pair subsets of 2, 3, 4, 6, 8, and 10 out of a possible maximum of 12. An eight-vowel test, a 16-consonant test, and BKB sentences were presented against a background of pink noise.

View Article and Find Full Text PDF