Publications by authors named "Carolyn E Dundes"

Understanding how morphogen gradients spatially pattern tissues is a fundamental question in developmental biology but can be difficult to directly address using conventional approaches. Here, we expose hPSC-derived endoderm cells to countervailing gradients of anteriorizing and posteriorizing signals using a widely available microfluidic device. This approach yielded spatially patterned cultures comprising anterior foregut (precursor to the thyroid, esophagus, and lungs) and mid/hindgut (precursor to the intestines) cells, whose identities were confirmed using single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Background: Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease.

Results: To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers.

View Article and Find Full Text PDF

The Notch pathway regulates cell fate decisions and is an emerging target for regenerative and cancer therapies. Recombinant Notch ligands are attractive candidates for modulating Notch signaling; however, their intrinsically low receptor-binding affinity restricts their utility in biomedical applications. To overcome this limitation, we evolved variants of the ligand Delta-like 4 with enhanced affinity and cross-reactivity.

View Article and Find Full Text PDF

The ability to harness the processes by which complex tissues arise during embryonic development would improve the ability to engineer complex tissuelike constructs -a longstanding goal of tissue engineering and regenerative medicine. In embryos, uniform populations of stem cells are exposed to spatial gradients of diffusible extracellular signaling proteins, known as morphogens. Varying levels of these signaling proteins induce stem cells to differentiate into distinct cell types at different positions along the gradient, thus creating spatially patterned tissues.

View Article and Find Full Text PDF

GABAergic interneuron dysfunction has been implicated in temporal lobe epilepsy (TLE), autism, and schizophrenia. Inhibitory interneuron progenitors transplanted into the hippocampus of rodents with TLE provide varying degrees of seizure suppression. We investigated whether human embryonic stem cell (hESC)-derived interneuron progenitors (hESNPs) could differentiate, correct hippocampal-dependent spatial memory deficits, and suppress seizures in a pilocarpine-induced TLE mouse model.

View Article and Find Full Text PDF