Macular telangiectasia type 2 (MacTel) is a progressive, late-onset retinal degenerative disease linked to decreased serum levels of serine that elevate circulating levels of a toxic ceramide species, deoxysphingolipids (deoxySLs); however, causal genetic variants that reduce serine levels in patients have not been identified. Here we identify rare, functional variants in the gene encoding the rate-limiting serine biosynthetic enzyme, phosphoglycerate dehydrogenase (PHGDH), as the single locus accounting for a significant fraction of MacTel. Under a dominant collapsing analysis model of a genome-wide enrichment analysis of rare variants predicted to impact protein function in 793 MacTel cases and 17,610 matched controls, the PHGDH gene achieves genome-wide significance (P = 1.
View Article and Find Full Text PDFBackground: Identifying mechanisms of diseases with complex inheritance patterns, such as macular telangiectasia type 2, is challenging. A link between macular telangiectasia type 2 and altered serine metabolism has been established previously.
Methods: Through exome sequence analysis of a patient with macular telangiectasia type 2 and his family members, we identified a variant in encoding a subunit of serine palmitoyltransferase (SPT).
Purpose: We sought to advance interpretations and quantification of short-wavelength fundus autofluorescence (SW-AF) emitted from bisretinoid lipofuscin and near-infrared autofluoresence (NIR-AF) originating from melanin.
Methods: Carriers of mutations in X-linked GPR143/OA1, a common form of ocular albinism; patients with confirmed mutations in ABCA4 conferring increased SW-AF; and subjects with healthy eyes were studied. SW-AF (488 nm excitation, 500-680 nm emission) and NIR-AF (excitation 787 nm, emission >830 nm) images were acquired with a confocal scanning laser ophthalmoscope.
Idiopathic juxtafoveal retinal telangiectasis type 2 (macular telangiectasia type 2; MacTel) is a rare neurovascular degenerative retinal disease. To identify genetic susceptibility loci for MacTel, we performed a genome-wide association study (GWAS) with 476 cases and 1,733 controls of European ancestry. Genome-wide significant associations (P < 5 × 10) were identified at three independent loci (rs73171800 at 5q14.
View Article and Find Full Text PDFPurpose: To report the ocular phenotype in patients with autosomal recessive bestrophinopathy and carriers, and to describe novel BEST1 mutations.
Methods: Patients with clinically suspected and subsequently genetically proven autosomal recessive bestrophinopathy underwent full ophthalmic examination and investigation with fundus autofluorescence imaging, spectral domain optical coherence tomography, electroretinography, and electrooculography. Mutation analysis of the BEST1 gene was performed through direct Sanger sequencing.
Autosomal recessive Stargardt disease (STGD1) is caused by hundreds of mutations in the ABCA4 gene, which are often specific to racial and ethnic groups. Here, we investigated the ABCA4 variation and their phenotypic expression in a cohort of 44 patients of African American descent, a previously under-characterized racial group. Patients were screened for mutations in ABCA4 by next-generation sequencing and array-comparative genomic hybridization (aCGH), followed by analyses for pathogenicity by in silico programs.
View Article and Find Full Text PDFRetinitis pigmentosa (RP), a genetically heterogeneous group of retinopathies that occur in both non-syndromic and syndromic forms, is caused by mutations in ∼100 genes. Although recent advances in next-generation sequencing have aided in the discovery of novel RP genes, a number of the underlying contributing genes and loci remain to be identified. We investigated three siblings, born to asymptomatic parents of Italian-American descent, who each presented with atypical RP with systemic features, including facial dysmorphologies, psychomotor developmental delays recognized since early childhood, learning disabilities and short stature.
View Article and Find Full Text PDF