Publications by authors named "Carolyn B Lauzon"

Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes.

View Article and Find Full Text PDF

Anatomical contexts (spatial labels) are critical for interpretation of medical imaging content. Numerous approaches have been devised for segmentation, query, and retrieval within the Picture Archive and Communication System (PACS) framework. To date, application-based methods for anatomical localization and tissue classification have yielded the most successful results, but these approaches typically rely upon the availability of standardized imaging sequences.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) provides quantitative parametric maps sensitive to tissue microarchitecture (e.g., fractional anisotropy, FA).

View Article and Find Full Text PDF

Quality and consistency of clinical and research data collected from Magnetic Resonance Imaging (MRI) scanners may become suspect due to a wide variety of common factors including, experimental changes, hardware degradation, hardware replacement, software updates, personnel changes, and observed imaging artifacts. Standard practice limits quality analysis to visual assessment by a researcher/clinician or a quantitative quality control based upon phantoms which may not be timely, cannot account for differing experimental protocol (e.g.

View Article and Find Full Text PDF

Diffusion tensor imaging enables in vivo investigation of tissue cytoarchitecture through parameter contrasts sensitive to water diffusion barriers at the micrometer level. Parameters are derived through an estimation process that is susceptible to noise and artifacts. Estimated parameters (e.

View Article and Find Full Text PDF

Massively univariate regression and inference in the form of statistical parametric mapping have transformed the way in which multi-dimensional imaging data are studied. In functional and structural neuroimaging, the de facto standard "design matrix"-based general linear regression model and its multi-level cousins have enabled investigation of the biological basis of the human brain. With modern study designs, it is possible to acquire multi-modal three-dimensional assessments of the same individuals--e.

View Article and Find Full Text PDF

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging method for measuring water diffusion in vivo. One powerful DTI contrast is fractional anisotropy (FA). FA reflects the strength of water's diffusion directional preference and is a primary metric for neuronal fiber tracking.

View Article and Find Full Text PDF

Chemical Exchange Saturation Transfer (CEST) is an MRI approach that can indirectly detect exchange broadened protons that are invisible in traditional NMR spectra. We modified the CEST pulse sequence for use on high-resolution spectrometers and developed a quantitative approach for measuring exchange rates based upon CEST spectra. This new methodology was applied to the rapidly exchanging Hδ1 and Hε2 protons of His57 in the catalytic triad of bovine chymotrypsinogen-A (bCT-A).

View Article and Find Full Text PDF

Massively univariate regression and inference in the form of statistical parametric mapping have transformed the way in which multi-dimensional imaging data are studied. In functional and structural neuroimaging, the standard "design matrix"-based general linear regression model and its multi-level cousins have enabled investigation of the biological basis of the human brain. With modern study designs, it is possible to acquire multiple three-dimensional assessments of the same individuals - e.

View Article and Find Full Text PDF